This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 18-Jul-2019) (Revised by AV, 11-Apr-2024) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrbagev1.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| psrbagev1.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | ||
| psrbagev1.x | ⊢ · = ( .g ‘ 𝑇 ) | ||
| psrbagev1.z | ⊢ 0 = ( 0g ‘ 𝑇 ) | ||
| psrbagev1.t | ⊢ ( 𝜑 → 𝑇 ∈ CMnd ) | ||
| psrbagev1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | ||
| psrbagev1.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) | ||
| Assertion | psrbagev1 | ⊢ ( 𝜑 → ( ( 𝐵 ∘f · 𝐺 ) : 𝐼 ⟶ 𝐶 ∧ ( 𝐵 ∘f · 𝐺 ) finSupp 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbagev1.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 2 | psrbagev1.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | |
| 3 | psrbagev1.x | ⊢ · = ( .g ‘ 𝑇 ) | |
| 4 | psrbagev1.z | ⊢ 0 = ( 0g ‘ 𝑇 ) | |
| 5 | psrbagev1.t | ⊢ ( 𝜑 → 𝑇 ∈ CMnd ) | |
| 6 | psrbagev1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | |
| 7 | psrbagev1.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) | |
| 8 | 5 | cmnmndd | ⊢ ( 𝜑 → 𝑇 ∈ Mnd ) |
| 9 | 2 3 | mulgnn0cl | ⊢ ( ( 𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 · 𝑧 ) ∈ 𝐶 ) |
| 10 | 9 | 3expb | ⊢ ( ( 𝑇 ∈ Mnd ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝐶 ) |
| 11 | 8 10 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝐶 ) |
| 12 | 1 | psrbagf | ⊢ ( 𝐵 ∈ 𝐷 → 𝐵 : 𝐼 ⟶ ℕ0 ) |
| 13 | 6 12 | syl | ⊢ ( 𝜑 → 𝐵 : 𝐼 ⟶ ℕ0 ) |
| 14 | 13 | ffnd | ⊢ ( 𝜑 → 𝐵 Fn 𝐼 ) |
| 15 | 6 14 | fndmexd | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 16 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 17 | 11 13 7 15 15 16 | off | ⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) : 𝐼 ⟶ 𝐶 ) |
| 18 | ovexd | ⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) ∈ V ) | |
| 19 | 7 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐼 ) |
| 20 | 14 19 15 15 | offun | ⊢ ( 𝜑 → Fun ( 𝐵 ∘f · 𝐺 ) ) |
| 21 | 4 | fvexi | ⊢ 0 ∈ V |
| 22 | 21 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 23 | 1 | psrbagfsupp | ⊢ ( 𝐵 ∈ 𝐷 → 𝐵 finSupp 0 ) |
| 24 | 6 23 | syl | ⊢ ( 𝜑 → 𝐵 finSupp 0 ) |
| 25 | 24 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐵 supp 0 ) ∈ Fin ) |
| 26 | ssidd | ⊢ ( 𝜑 → ( 𝐵 supp 0 ) ⊆ ( 𝐵 supp 0 ) ) | |
| 27 | 2 4 3 | mulg0 | ⊢ ( 𝑧 ∈ 𝐶 → ( 0 · 𝑧 ) = 0 ) |
| 28 | 27 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( 0 · 𝑧 ) = 0 ) |
| 29 | c0ex | ⊢ 0 ∈ V | |
| 30 | 29 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 31 | 26 28 13 7 15 30 | suppssof1 | ⊢ ( 𝜑 → ( ( 𝐵 ∘f · 𝐺 ) supp 0 ) ⊆ ( 𝐵 supp 0 ) ) |
| 32 | suppssfifsupp | ⊢ ( ( ( ( 𝐵 ∘f · 𝐺 ) ∈ V ∧ Fun ( 𝐵 ∘f · 𝐺 ) ∧ 0 ∈ V ) ∧ ( ( 𝐵 supp 0 ) ∈ Fin ∧ ( ( 𝐵 ∘f · 𝐺 ) supp 0 ) ⊆ ( 𝐵 supp 0 ) ) ) → ( 𝐵 ∘f · 𝐺 ) finSupp 0 ) | |
| 33 | 18 20 22 25 31 32 | syl32anc | ⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) finSupp 0 ) |
| 34 | 17 33 | jca | ⊢ ( 𝜑 → ( ( 𝐵 ∘f · 𝐺 ) : 𝐼 ⟶ 𝐶 ∧ ( 𝐵 ∘f · 𝐺 ) finSupp 0 ) ) |