This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear function on the polynomial ring which is multiplicative on scaled monomials is generally multiplicative. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 11-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlslem2.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| evlslem2.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlslem2.m | ⊢ · = ( .r ‘ 𝑆 ) | ||
| evlslem2.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| evlslem2.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| evlslem2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| evlslem2.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evlslem2.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlslem2.e1 | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) ) | ||
| evlslem2.e2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) ) → ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑗 ∘f + 𝑖 ) , ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) , 0 ) ) ) = ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) | ||
| Assertion | evlslem2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐸 ‘ 𝑥 ) · ( 𝐸 ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlslem2.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | evlslem2.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | evlslem2.m | ⊢ · = ( .r ‘ 𝑆 ) | |
| 4 | evlslem2.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | evlslem2.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 6 | evlslem2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 7 | evlslem2.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 8 | evlslem2.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 9 | evlslem2.e1 | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) ) | |
| 10 | evlslem2.e2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) ) → ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑗 ∘f + 𝑖 ) , ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) , 0 ) ) ) = ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) | |
| 11 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 12 | eqid | ⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) | |
| 13 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 14 | 5 13 | rabex2 | ⊢ 𝐷 ∈ V |
| 15 | 14 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐷 ∈ V ) |
| 16 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 17 | 7 16 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 18 | 1 6 17 | mplringd | ⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ Ring ) |
| 20 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 21 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
| 22 | 17 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 23 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 24 | 1 20 2 5 23 | mplelf | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 25 | 24 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝑥 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 26 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → 𝑗 ∈ 𝐷 ) | |
| 27 | 1 5 4 20 21 22 2 25 26 | mplmon2cl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ 𝐵 ) |
| 28 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
| 29 | 17 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 30 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 31 | 1 20 2 5 30 | mplelf | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 32 | 31 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → ( 𝑦 ‘ 𝑖 ) ∈ ( Base ‘ 𝑅 ) ) |
| 33 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → 𝑖 ∈ 𝐷 ) | |
| 34 | 1 5 4 20 28 29 2 32 33 | mplmon2cl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ 𝐵 ) |
| 35 | 14 | mptex | ⊢ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∈ V |
| 36 | funmpt | ⊢ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) | |
| 37 | fvex | ⊢ ( 0g ‘ 𝑃 ) ∈ V | |
| 38 | 35 36 37 | 3pm3.2i | ⊢ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) |
| 39 | 38 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ) |
| 40 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 41 | 1 2 4 40 | mplelsfi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 finSupp 0 ) |
| 42 | 41 | fsuppimpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 supp 0 ) ∈ Fin ) |
| 43 | 1 20 2 5 40 | mplelf | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 44 | ssidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 supp 0 ) ⊆ ( 𝑦 supp 0 ) ) | |
| 45 | 14 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ V ) |
| 46 | 4 | fvexi | ⊢ 0 ∈ V |
| 47 | 46 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 0 ∈ V ) |
| 48 | 43 44 45 47 | suppssr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → ( 𝑦 ‘ 𝑗 ) = 0 ) |
| 49 | 48 | ifeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) = if ( 𝑘 = 𝑗 , 0 , 0 ) ) |
| 50 | ifid | ⊢ if ( 𝑘 = 𝑗 , 0 , 0 ) = 0 | |
| 51 | 49 50 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) = 0 ) |
| 52 | 51 | mpteq2dv | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ 0 ) ) |
| 53 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 54 | 17 53 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 55 | 1 5 4 12 6 54 | mpl0 | ⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝐷 × { 0 } ) ) |
| 56 | fconstmpt | ⊢ ( 𝐷 × { 0 } ) = ( 𝑘 ∈ 𝐷 ↦ 0 ) | |
| 57 | 55 56 | eqtrdi | ⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝑘 ∈ 𝐷 ↦ 0 ) ) |
| 58 | 57 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → ( 0g ‘ 𝑃 ) = ( 𝑘 ∈ 𝐷 ↦ 0 ) ) |
| 59 | 52 58 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) = ( 0g ‘ 𝑃 ) ) |
| 60 | 59 45 | suppss2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑦 supp 0 ) ) |
| 61 | suppssfifsupp | ⊢ ( ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( 𝑦 supp 0 ) ∈ Fin ∧ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑦 supp 0 ) ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) | |
| 62 | 39 42 60 61 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 63 | 62 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 64 | fveq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ‘ 𝑗 ) = ( 𝑥 ‘ 𝑗 ) ) | |
| 65 | 64 | ifeq1d | ⊢ ( 𝑦 = 𝑥 → if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) = if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) |
| 66 | 65 | mpteq2dv | ⊢ ( 𝑦 = 𝑥 → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) |
| 67 | 66 | mpteq2dv | ⊢ ( 𝑦 = 𝑥 → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) = ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) |
| 68 | 67 | breq1d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ↔ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) ) |
| 69 | 68 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 70 | 63 69 | sylib | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 71 | 70 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 72 | 71 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 73 | equequ2 | ⊢ ( 𝑖 = 𝑗 → ( 𝑘 = 𝑖 ↔ 𝑘 = 𝑗 ) ) | |
| 74 | fveq2 | ⊢ ( 𝑖 = 𝑗 → ( 𝑦 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑗 ) ) | |
| 75 | 73 74 | ifbieq1d | ⊢ ( 𝑖 = 𝑗 → if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) = if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) |
| 76 | 75 | mpteq2dv | ⊢ ( 𝑖 = 𝑗 → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) |
| 77 | 76 | cbvmptv | ⊢ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) = ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) |
| 78 | 62 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 79 | 77 78 | eqbrtrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 80 | 2 11 12 15 15 19 27 34 72 79 | gsumdixp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
| 81 | 80 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
| 82 | ringcmn | ⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) | |
| 83 | 18 82 | syl | ⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
| 84 | 83 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ CMnd ) |
| 85 | crngring | ⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) | |
| 86 | 8 85 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 87 | 86 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ Ring ) |
| 88 | ringmnd | ⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Mnd ) | |
| 89 | 87 88 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ Mnd ) |
| 90 | 14 14 | xpex | ⊢ ( 𝐷 × 𝐷 ) ∈ V |
| 91 | 90 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐷 × 𝐷 ) ∈ V ) |
| 92 | ghmmhm | ⊢ ( 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) → 𝐸 ∈ ( 𝑃 MndHom 𝑆 ) ) | |
| 93 | 9 92 | syl | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝑃 MndHom 𝑆 ) ) |
| 94 | 93 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐸 ∈ ( 𝑃 MndHom 𝑆 ) ) |
| 95 | 18 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝑃 ∈ Ring ) |
| 96 | 27 | adantrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ 𝐵 ) |
| 97 | 34 | adantrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ 𝐵 ) |
| 98 | 2 11 | ringcl | ⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ 𝐵 ∧ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ 𝐵 ) |
| 99 | 95 96 97 98 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ 𝐵 ) |
| 100 | 99 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑗 ∈ 𝐷 ∀ 𝑖 ∈ 𝐷 ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ 𝐵 ) |
| 101 | eqid | ⊢ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) | |
| 102 | 101 | fmpo | ⊢ ( ∀ 𝑗 ∈ 𝐷 ∀ 𝑖 ∈ 𝐷 ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ 𝐵 ↔ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) : ( 𝐷 × 𝐷 ) ⟶ 𝐵 ) |
| 103 | 100 102 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) : ( 𝐷 × 𝐷 ) ⟶ 𝐵 ) |
| 104 | 14 14 | mpoex | ⊢ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V |
| 105 | 101 | mpofun | ⊢ Fun ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) |
| 106 | 104 105 37 | 3pm3.2i | ⊢ ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) |
| 107 | 106 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ) |
| 108 | 72 | fsuppimpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ) |
| 109 | 79 | fsuppimpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ) |
| 110 | xpfi | ⊢ ( ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ∧ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ) → ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ∈ Fin ) | |
| 111 | 108 109 110 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ∈ Fin ) |
| 112 | 2 12 11 19 27 34 15 15 | evlslem4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ) |
| 113 | suppssfifsupp | ⊢ ( ( ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ∈ Fin ∧ ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) | |
| 114 | 107 111 112 113 | syl12anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 115 | 2 12 84 89 91 94 103 114 | gsummhm | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
| 116 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝐼 ∈ 𝑊 ) |
| 117 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝑅 ∈ CRing ) |
| 118 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 119 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝑗 ∈ 𝐷 ) | |
| 120 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝑖 ∈ 𝐷 ) | |
| 121 | 25 | adantrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝑥 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 122 | 32 | adantrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝑦 ‘ 𝑖 ) ∈ ( Base ‘ 𝑅 ) ) |
| 123 | 1 5 4 20 116 117 11 118 119 120 121 122 | mplmon2mul | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑗 ∘f + 𝑖 ) , ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) , 0 ) ) ) |
| 124 | 123 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑗 ∘f + 𝑖 ) , ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) , 0 ) ) ) ) |
| 125 | 10 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑗 ∘f + 𝑖 ) , ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) , 0 ) ) ) = ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
| 126 | 124 125 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
| 127 | 126 | 3impb | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) → ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
| 128 | 127 | mpoeq3dva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
| 129 | 128 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
| 130 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) | |
| 131 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 132 | 2 131 | ghmf | ⊢ ( 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) → 𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
| 133 | 9 132 | syl | ⊢ ( 𝜑 → 𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
| 134 | 133 | feqmptd | ⊢ ( 𝜑 → 𝐸 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐸 ‘ 𝑧 ) ) ) |
| 135 | 134 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐸 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐸 ‘ 𝑧 ) ) ) |
| 136 | fveq2 | ⊢ ( 𝑧 = ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) → ( 𝐸 ‘ 𝑧 ) = ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) | |
| 137 | 99 130 135 136 | fmpoco | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
| 138 | 137 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
| 139 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) = ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) | |
| 140 | fveq2 | ⊢ ( 𝑧 = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) → ( 𝐸 ‘ 𝑧 ) = ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) | |
| 141 | 27 139 135 140 | fmptco | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) = ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) |
| 142 | 141 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) ) |
| 143 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) = ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) | |
| 144 | fveq2 | ⊢ ( 𝑧 = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) → ( 𝐸 ‘ 𝑧 ) = ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) | |
| 145 | 34 143 135 144 | fmptco | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
| 146 | 145 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝑆 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
| 147 | 142 146 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( ( 𝑆 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
| 148 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 149 | 133 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → 𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
| 150 | 149 27 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 151 | 133 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → 𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
| 152 | 151 34 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 153 | 14 | mptex | ⊢ ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∈ V |
| 154 | funmpt | ⊢ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) | |
| 155 | fvex | ⊢ ( 0g ‘ 𝑆 ) ∈ V | |
| 156 | 153 154 155 | 3pm3.2i | ⊢ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) |
| 157 | 156 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) ) |
| 158 | ssidd | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) | |
| 159 | 12 148 | ghmid | ⊢ ( 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) → ( 𝐸 ‘ ( 0g ‘ 𝑃 ) ) = ( 0g ‘ 𝑆 ) ) |
| 160 | 9 159 | syl | ⊢ ( 𝜑 → ( 𝐸 ‘ ( 0g ‘ 𝑃 ) ) = ( 0g ‘ 𝑆 ) ) |
| 161 | 14 | mptex | ⊢ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ V |
| 162 | 161 | a1i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ V ) |
| 163 | 37 | a1i | ⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ V ) |
| 164 | 158 160 162 163 | suppssfv | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
| 165 | 164 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
| 166 | suppssfifsupp | ⊢ ( ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) ∧ ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ∧ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) | |
| 167 | 157 108 165 166 | syl12anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
| 168 | 14 | mptex | ⊢ ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V |
| 169 | funmpt | ⊢ Fun ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) | |
| 170 | 168 169 155 | 3pm3.2i | ⊢ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) |
| 171 | 170 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) ) |
| 172 | ssidd | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) | |
| 173 | 14 | mptex | ⊢ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ V |
| 174 | 173 | a1i | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ V ) |
| 175 | 172 160 174 163 | suppssfv | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
| 176 | 175 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
| 177 | suppssfifsupp | ⊢ ( ( ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) ∧ ( ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ∧ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) | |
| 178 | 171 109 176 177 | syl12anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
| 179 | 131 3 148 15 15 87 150 152 167 178 | gsumdixp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑆 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
| 180 | 147 179 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
| 181 | 129 138 180 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
| 182 | 81 115 181 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
| 183 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑊 ) |
| 184 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
| 185 | 1 5 4 2 183 184 23 | mplcoe4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 = ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) |
| 186 | 1 5 4 2 183 184 30 | mplcoe4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 = ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
| 187 | 185 186 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) = ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
| 188 | 187 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( 𝐸 ‘ ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
| 189 | 185 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑥 ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) ) |
| 190 | 27 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) : 𝐷 ⟶ 𝐵 ) |
| 191 | 2 12 84 89 15 94 190 72 | gsummhm | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) ) |
| 192 | 189 191 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑥 ) = ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) ) |
| 193 | 186 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
| 194 | 34 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) : 𝐷 ⟶ 𝐵 ) |
| 195 | 2 12 84 89 15 94 194 79 | gsummhm | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
| 196 | 193 195 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
| 197 | 192 196 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐸 ‘ 𝑥 ) · ( 𝐸 ‘ 𝑦 ) ) = ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
| 198 | 182 188 197 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐸 ‘ 𝑥 ) · ( 𝐸 ‘ 𝑦 ) ) ) |