This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a given interpretation of the variables G and of the scalars F , this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 11-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlseu.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| evlseu.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| evlseu.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| evlseu.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | ||
| evlseu.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| evlseu.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evlseu.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlseu.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | ||
| evlseu.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) | ||
| Assertion | evlseu | ⊢ ( 𝜑 → ∃! 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlseu.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | evlseu.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | evlseu.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 4 | evlseu.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 5 | evlseu.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | evlseu.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 7 | evlseu.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 8 | evlseu.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 9 | evlseu.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 11 | eqid | ⊢ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } = { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } | |
| 12 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 13 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑆 ) ) = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) | |
| 14 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 15 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) | |
| 16 | 1 10 2 11 12 13 14 4 15 5 6 7 8 9 3 | evlslem1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∈ ( 𝑃 RingHom 𝑆 ) ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) ) |
| 17 | coeq1 | ⊢ ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( 𝑚 ∘ 𝐴 ) = ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) ) | |
| 18 | 17 | eqeq1d | ⊢ ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ↔ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ) ) |
| 19 | coeq1 | ⊢ ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( 𝑚 ∘ 𝑉 ) = ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) ) | |
| 20 | 19 | eqeq1d | ⊢ ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( ( 𝑚 ∘ 𝑉 ) = 𝐺 ↔ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) ) |
| 21 | 18 20 | anbi12d | ⊢ ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ↔ ( ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) ) ) |
| 22 | 21 | rspcev | ⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∈ ( 𝑃 RingHom 𝑆 ) ∧ ( ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) ) → ∃ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) |
| 23 | 22 | 3impb | ⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∈ ( 𝑃 RingHom 𝑆 ) ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) → ∃ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) |
| 24 | 16 23 | syl | ⊢ ( 𝜑 → ∃ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) |
| 25 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 26 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 27 | 6 26 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 28 | 1 10 25 3 5 27 | mplasclf | ⊢ ( 𝜑 → 𝐴 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) ) |
| 29 | 28 | ffund | ⊢ ( 𝜑 → Fun 𝐴 ) |
| 30 | funcoeqres | ⊢ ( ( Fun 𝐴 ∧ ( 𝑚 ∘ 𝐴 ) = 𝐹 ) → ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 ∘ ◡ 𝐴 ) ) | |
| 31 | 29 30 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∘ 𝐴 ) = 𝐹 ) → ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 ∘ ◡ 𝐴 ) ) |
| 32 | 1 4 10 5 27 | mvrf2 | ⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) ) |
| 33 | 32 | ffund | ⊢ ( 𝜑 → Fun 𝑉 ) |
| 34 | funcoeqres | ⊢ ( ( Fun 𝑉 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 ∘ ◡ 𝑉 ) ) | |
| 35 | 33 34 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 ∘ ◡ 𝑉 ) ) |
| 36 | 31 35 | anim12dan | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) → ( ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 ∘ ◡ 𝐴 ) ∧ ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 ∘ ◡ 𝑉 ) ) ) |
| 37 | 36 | ex | ⊢ ( 𝜑 → ( ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) → ( ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 ∘ ◡ 𝐴 ) ∧ ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 ∘ ◡ 𝑉 ) ) ) ) |
| 38 | resundi | ⊢ ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝑚 ↾ ran 𝐴 ) ∪ ( 𝑚 ↾ ran 𝑉 ) ) | |
| 39 | uneq12 | ⊢ ( ( ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 ∘ ◡ 𝐴 ) ∧ ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 ∘ ◡ 𝑉 ) ) → ( ( 𝑚 ↾ ran 𝐴 ) ∪ ( 𝑚 ↾ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) | |
| 40 | 38 39 | eqtrid | ⊢ ( ( ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 ∘ ◡ 𝐴 ) ∧ ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 ∘ ◡ 𝑉 ) ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) |
| 41 | 37 40 | syl6 | ⊢ ( 𝜑 → ( ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) ) |
| 42 | 41 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) ) |
| 43 | eqtr3 | ⊢ ( ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ∧ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) ) | |
| 44 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 45 | 44 5 6 | psrassa | ⊢ ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ) |
| 46 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 47 | 44 4 46 5 27 | mvrf | ⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 48 | 47 | frnd | ⊢ ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 49 | eqid | ⊢ ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 50 | eqid | ⊢ ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 51 | eqid | ⊢ ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) = ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) | |
| 52 | 49 50 51 46 | aspval2 | ⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) ) |
| 53 | 45 48 52 | syl2anc | ⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) ) |
| 54 | 1 44 4 49 5 6 | mplbas2 | ⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = ( Base ‘ 𝑃 ) ) |
| 55 | 44 1 10 5 27 | mplsubrg | ⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 56 | 1 44 10 | mplval2 | ⊢ 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) |
| 57 | 56 | subsubrg2 | ⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( SubRing ‘ 𝑃 ) = ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) |
| 58 | 55 57 | syl | ⊢ ( 𝜑 → ( SubRing ‘ 𝑃 ) = ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) |
| 59 | 58 | fveq2d | ⊢ ( 𝜑 → ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) = ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) ) |
| 60 | 50 56 | ressascl | ⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( algSc ‘ 𝑃 ) ) |
| 61 | 55 60 | syl | ⊢ ( 𝜑 → ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( algSc ‘ 𝑃 ) ) |
| 62 | 3 61 | eqtr4id | ⊢ ( 𝜑 → 𝐴 = ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 63 | 62 | rneqd | ⊢ ( 𝜑 → ran 𝐴 = ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 64 | 63 | uneq1d | ⊢ ( 𝜑 → ( ran 𝐴 ∪ ran 𝑉 ) = ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) |
| 65 | 59 64 | fveq12d | ⊢ ( 𝜑 → ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) ) |
| 66 | assaring | ⊢ ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg → ( 𝐼 mPwSer 𝑅 ) ∈ Ring ) | |
| 67 | 46 | subrgmre | ⊢ ( ( 𝐼 mPwSer 𝑅 ) ∈ Ring → ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Moore ‘ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) |
| 68 | 45 66 67 | 3syl | ⊢ ( 𝜑 → ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Moore ‘ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) |
| 69 | 28 | frnd | ⊢ ( 𝜑 → ran 𝐴 ⊆ ( Base ‘ 𝑃 ) ) |
| 70 | 63 69 | eqsstrrd | ⊢ ( 𝜑 → ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ⊆ ( Base ‘ 𝑃 ) ) |
| 71 | 32 | frnd | ⊢ ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ 𝑃 ) ) |
| 72 | 70 71 | unssd | ⊢ ( 𝜑 → ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) |
| 73 | eqid | ⊢ ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) = ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) | |
| 74 | 51 73 | submrc | ⊢ ( ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Moore ‘ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) → ( ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) = ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) ) |
| 75 | 68 55 72 74 | syl3anc | ⊢ ( 𝜑 → ( ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) = ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) ) |
| 76 | 65 75 | eqtr2d | ⊢ ( 𝜑 → ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) = ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) ) |
| 77 | 53 54 76 | 3eqtr3d | ⊢ ( 𝜑 → ( Base ‘ 𝑃 ) = ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) ) |
| 78 | 77 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) → ( Base ‘ 𝑃 ) = ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) ) |
| 79 | 1 5 27 | mplringd | ⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 80 | 10 | subrgmre | ⊢ ( 𝑃 ∈ Ring → ( SubRing ‘ 𝑃 ) ∈ ( Moore ‘ ( Base ‘ 𝑃 ) ) ) |
| 81 | 79 80 | syl | ⊢ ( 𝜑 → ( SubRing ‘ 𝑃 ) ∈ ( Moore ‘ ( Base ‘ 𝑃 ) ) ) |
| 82 | 81 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) → ( SubRing ‘ 𝑃 ) ∈ ( Moore ‘ ( Base ‘ 𝑃 ) ) ) |
| 83 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) → ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) | |
| 84 | rhmeql | ⊢ ( ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) → dom ( 𝑚 ∩ 𝑛 ) ∈ ( SubRing ‘ 𝑃 ) ) | |
| 85 | 84 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) → dom ( 𝑚 ∩ 𝑛 ) ∈ ( SubRing ‘ 𝑃 ) ) |
| 86 | eqid | ⊢ ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) = ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) | |
| 87 | 86 | mrcsscl | ⊢ ( ( ( SubRing ‘ 𝑃 ) ∈ ( Moore ‘ ( Base ‘ 𝑃 ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ∧ dom ( 𝑚 ∩ 𝑛 ) ∈ ( SubRing ‘ 𝑃 ) ) → ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) |
| 88 | 82 83 85 87 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) → ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) |
| 89 | 78 88 | eqsstrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) → ( Base ‘ 𝑃 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) |
| 90 | 89 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) → ( Base ‘ 𝑃 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) ) |
| 91 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ) | |
| 92 | 10 2 | rhmf | ⊢ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) → 𝑚 : ( Base ‘ 𝑃 ) ⟶ 𝐶 ) |
| 93 | ffn | ⊢ ( 𝑚 : ( Base ‘ 𝑃 ) ⟶ 𝐶 → 𝑚 Fn ( Base ‘ 𝑃 ) ) | |
| 94 | 91 92 93 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → 𝑚 Fn ( Base ‘ 𝑃 ) ) |
| 95 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) | |
| 96 | 10 2 | rhmf | ⊢ ( 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) → 𝑛 : ( Base ‘ 𝑃 ) ⟶ 𝐶 ) |
| 97 | ffn | ⊢ ( 𝑛 : ( Base ‘ 𝑃 ) ⟶ 𝐶 → 𝑛 Fn ( Base ‘ 𝑃 ) ) | |
| 98 | 95 96 97 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → 𝑛 Fn ( Base ‘ 𝑃 ) ) |
| 99 | 69 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ran 𝐴 ⊆ ( Base ‘ 𝑃 ) ) |
| 100 | 71 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ran 𝑉 ⊆ ( Base ‘ 𝑃 ) ) |
| 101 | 99 100 | unssd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ran 𝐴 ∪ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) |
| 102 | fnreseql | ⊢ ( ( 𝑚 Fn ( Base ‘ 𝑃 ) ∧ 𝑛 Fn ( Base ‘ 𝑃 ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) → ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) ↔ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) ) | |
| 103 | 94 98 101 102 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) ↔ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) ) |
| 104 | fneqeql2 | ⊢ ( ( 𝑚 Fn ( Base ‘ 𝑃 ) ∧ 𝑛 Fn ( Base ‘ 𝑃 ) ) → ( 𝑚 = 𝑛 ↔ ( Base ‘ 𝑃 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) ) | |
| 105 | 94 98 104 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( 𝑚 = 𝑛 ↔ ( Base ‘ 𝑃 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) ) |
| 106 | 90 103 105 | 3imtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) → 𝑚 = 𝑛 ) ) |
| 107 | 43 106 | syl5 | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ∧ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) → 𝑚 = 𝑛 ) ) |
| 108 | 107 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∀ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ( ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ∧ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) → 𝑚 = 𝑛 ) ) |
| 109 | reseq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) ) | |
| 110 | 109 | eqeq1d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ↔ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) ) |
| 111 | 110 | rmo4 | ⊢ ( ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ↔ ∀ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∀ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ( ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ∧ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) → 𝑚 = 𝑛 ) ) |
| 112 | 108 111 | sylibr | ⊢ ( 𝜑 → ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) |
| 113 | rmoim | ⊢ ( ∀ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) → ( ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) → ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) ) | |
| 114 | 42 112 113 | sylc | ⊢ ( 𝜑 → ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) |
| 115 | reu5 | ⊢ ( ∃! 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ↔ ( ∃ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ∧ ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) ) | |
| 116 | 24 114 115 | sylanbrc | ⊢ ( 𝜑 → ∃! 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) |