This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for evlseu . Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 26-Jul-2019) (Revised by AV, 11-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlslem1.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| evlslem1.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlslem1.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| evlslem1.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| evlslem1.t | ⊢ 𝑇 = ( mulGrp ‘ 𝑆 ) | ||
| evlslem1.x | ⊢ ↑ = ( .g ‘ 𝑇 ) | ||
| evlslem1.m | ⊢ · = ( .r ‘ 𝑆 ) | ||
| evlslem1.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | ||
| evlslem1.e | ⊢ 𝐸 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) | ||
| evlslem1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| evlslem1.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evlslem1.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlslem1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | ||
| evlslem1.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) | ||
| evlslem6.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | evlslem6 | ⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ∧ ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlslem1.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | evlslem1.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | evlslem1.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 4 | evlslem1.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 5 | evlslem1.t | ⊢ 𝑇 = ( mulGrp ‘ 𝑆 ) | |
| 6 | evlslem1.x | ⊢ ↑ = ( .g ‘ 𝑇 ) | |
| 7 | evlslem1.m | ⊢ · = ( .r ‘ 𝑆 ) | |
| 8 | evlslem1.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 9 | evlslem1.e | ⊢ 𝐸 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) | |
| 10 | evlslem1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 11 | evlslem1.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 12 | evlslem1.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 13 | evlslem1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 14 | evlslem1.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) | |
| 15 | evlslem6.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 16 | crngring | ⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) | |
| 17 | 12 16 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ Ring ) |
| 19 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 20 | 19 3 | rhmf | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) |
| 21 | 13 20 | syl | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) |
| 23 | 1 19 2 4 15 | mplelf | ⊢ ( 𝜑 → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 24 | 23 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑌 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 25 | 22 24 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) ∈ 𝐶 ) |
| 26 | 5 3 | mgpbas | ⊢ 𝐶 = ( Base ‘ 𝑇 ) |
| 27 | 5 | crngmgp | ⊢ ( 𝑆 ∈ CRing → 𝑇 ∈ CMnd ) |
| 28 | 12 27 | syl | ⊢ ( 𝜑 → 𝑇 ∈ CMnd ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑇 ∈ CMnd ) |
| 30 | simpr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ 𝐷 ) | |
| 31 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 32 | 4 26 6 29 30 31 | psrbagev2 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) |
| 33 | 3 7 | ringcl | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) ∈ 𝐶 ∧ ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) → ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ∈ 𝐶 ) |
| 34 | 18 25 32 33 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ∈ 𝐶 ) |
| 35 | 34 | fmpttd | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ) |
| 36 | ovexd | ⊢ ( 𝜑 → ( ℕ0 ↑m 𝐼 ) ∈ V ) | |
| 37 | 4 36 | rabexd | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 38 | 37 | mptexd | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ∈ V ) |
| 39 | funmpt | ⊢ Fun ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) | |
| 40 | 39 | a1i | ⊢ ( 𝜑 → Fun ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 41 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ V ) | |
| 42 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 43 | 1 2 42 15 | mplelsfi | ⊢ ( 𝜑 → 𝑌 finSupp ( 0g ‘ 𝑅 ) ) |
| 44 | 43 | fsuppimpd | ⊢ ( 𝜑 → ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) |
| 45 | 23 | feqmptd | ⊢ ( 𝜑 → 𝑌 = ( 𝑏 ∈ 𝐷 ↦ ( 𝑌 ‘ 𝑏 ) ) ) |
| 46 | 45 | oveq1d | ⊢ ( 𝜑 → ( 𝑌 supp ( 0g ‘ 𝑅 ) ) = ( ( 𝑏 ∈ 𝐷 ↦ ( 𝑌 ‘ 𝑏 ) ) supp ( 0g ‘ 𝑅 ) ) ) |
| 47 | eqimss2 | ⊢ ( ( 𝑌 supp ( 0g ‘ 𝑅 ) ) = ( ( 𝑏 ∈ 𝐷 ↦ ( 𝑌 ‘ 𝑏 ) ) supp ( 0g ‘ 𝑅 ) ) → ( ( 𝑏 ∈ 𝐷 ↦ ( 𝑌 ‘ 𝑏 ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) | |
| 48 | 46 47 | syl | ⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( 𝑌 ‘ 𝑏 ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) |
| 49 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 50 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 51 | 42 50 | ghmid | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 52 | 13 49 51 | 3syl | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 53 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑌 ‘ 𝑏 ) ∈ V ) | |
| 54 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) | |
| 55 | 48 52 53 54 | suppssfv | ⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) |
| 56 | 3 7 50 | ringlz | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ 𝐶 ) → ( ( 0g ‘ 𝑆 ) · 𝑥 ) = ( 0g ‘ 𝑆 ) ) |
| 57 | 17 56 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 0g ‘ 𝑆 ) · 𝑥 ) = ( 0g ‘ 𝑆 ) ) |
| 58 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) ∈ V ) | |
| 59 | 55 57 58 32 41 | suppssov1 | ⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) |
| 60 | suppssfifsupp | ⊢ ( ( ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ∈ V ∧ Fun ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) ∧ ( ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ∧ ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) | |
| 61 | 38 40 41 44 59 60 | syl32anc | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
| 62 | 35 61 | jca | ⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ∧ ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) ) |