This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulg1.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulg1.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | mulg1 | ⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulg1.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulg1.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | 1nn | ⊢ 1 ∈ ℕ | |
| 4 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 5 | eqid | ⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) | |
| 6 | 1 4 2 5 | mulgnn | ⊢ ( ( 1 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 1 ) ) |
| 7 | 3 6 | mpan | ⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 1 ) ) |
| 8 | 1z | ⊢ 1 ∈ ℤ | |
| 9 | fvconst2g | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 1 ∈ ℕ ) → ( ( ℕ × { 𝑋 } ) ‘ 1 ) = 𝑋 ) | |
| 10 | 3 9 | mpan2 | ⊢ ( 𝑋 ∈ 𝐵 → ( ( ℕ × { 𝑋 } ) ‘ 1 ) = 𝑋 ) |
| 11 | 8 10 | seq1i | ⊢ ( 𝑋 ∈ 𝐵 → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 1 ) = 𝑋 ) |
| 12 | 7 11 | eqtrd | ⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |