This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a sum using a bag of multipliers. (Contributed by Stefan O'Rear, 9-Mar-2015) (Proof shortened by AV, 18-Jul-2019) (Revised by AV, 11-Apr-2024) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrbagev2.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| psrbagev2.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | ||
| psrbagev2.x | ⊢ · = ( .g ‘ 𝑇 ) | ||
| psrbagev2.t | ⊢ ( 𝜑 → 𝑇 ∈ CMnd ) | ||
| psrbagev2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | ||
| psrbagev2.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) | ||
| Assertion | psrbagev2 | ⊢ ( 𝜑 → ( 𝑇 Σg ( 𝐵 ∘f · 𝐺 ) ) ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbagev2.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 2 | psrbagev2.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | |
| 3 | psrbagev2.x | ⊢ · = ( .g ‘ 𝑇 ) | |
| 4 | psrbagev2.t | ⊢ ( 𝜑 → 𝑇 ∈ CMnd ) | |
| 5 | psrbagev2.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | |
| 6 | psrbagev2.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 8 | ovexd | ⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) ∈ V ) | |
| 9 | 1 2 3 7 4 5 6 | psrbagev1 | ⊢ ( 𝜑 → ( ( 𝐵 ∘f · 𝐺 ) : 𝐼 ⟶ 𝐶 ∧ ( 𝐵 ∘f · 𝐺 ) finSupp ( 0g ‘ 𝑇 ) ) ) |
| 10 | 9 | simpld | ⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) : 𝐼 ⟶ 𝐶 ) |
| 11 | 10 | ffnd | ⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) Fn 𝐼 ) |
| 12 | 8 11 | fndmexd | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 13 | 9 | simprd | ⊢ ( 𝜑 → ( 𝐵 ∘f · 𝐺 ) finSupp ( 0g ‘ 𝑇 ) ) |
| 14 | 2 7 4 12 10 13 | gsumcl | ⊢ ( 𝜑 → ( 𝑇 Σg ( 𝐵 ∘f · 𝐺 ) ) ∈ 𝐶 ) |