This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrhmd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isrhmd.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| isrhmd.n | ⊢ 𝑁 = ( 1r ‘ 𝑆 ) | ||
| isrhmd.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| isrhmd.u | ⊢ × = ( .r ‘ 𝑆 ) | ||
| isrhmd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| isrhmd.s | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) | ||
| isrhmd.ho | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 𝑁 ) | ||
| isrhmd.ht | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) × ( 𝐹 ‘ 𝑦 ) ) ) | ||
| isrhmd.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| isrhmd.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| isrhmd.q | ⊢ ⨣ = ( +g ‘ 𝑆 ) | ||
| isrhmd.f | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) | ||
| isrhmd.hp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | ||
| Assertion | isrhmd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrhmd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isrhmd.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | isrhmd.n | ⊢ 𝑁 = ( 1r ‘ 𝑆 ) | |
| 4 | isrhmd.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | isrhmd.u | ⊢ × = ( .r ‘ 𝑆 ) | |
| 6 | isrhmd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | isrhmd.s | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) | |
| 8 | isrhmd.ho | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 𝑁 ) | |
| 9 | isrhmd.ht | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) × ( 𝐹 ‘ 𝑦 ) ) ) | |
| 10 | isrhmd.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 11 | isrhmd.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 12 | isrhmd.q | ⊢ ⨣ = ( +g ‘ 𝑆 ) | |
| 13 | isrhmd.f | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 14 | isrhmd.hp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 15 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 16 | 6 15 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 17 | ringgrp | ⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Grp ) | |
| 18 | 7 17 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 19 | 1 10 11 12 16 18 13 14 | isghmd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 20 | 1 2 3 4 5 6 7 8 9 19 | isrhm2d | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |