This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhm1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| rhm1.n | ⊢ 𝑁 = ( 1r ‘ 𝑆 ) | ||
| Assertion | rhm1 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ 1 ) = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhm1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 2 | rhm1.n | ⊢ 𝑁 = ( 1r ‘ 𝑆 ) | |
| 3 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 5 | 3 4 | rhmmhm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
| 6 | eqid | ⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 7 | eqid | ⊢ ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) | |
| 8 | 6 7 | mhm0 | ⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 9 | 5 8 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 10 | 3 1 | ringidval | ⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 11 | 10 | fveq2i | ⊢ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 12 | 4 2 | ringidval | ⊢ 𝑁 = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 13 | 9 11 12 | 3eqtr4g | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ 1 ) = 𝑁 ) |