This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag0.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| Assertion | psrbagsn | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝐾 , 1 , 0 ) ) ∈ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag0.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 3 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 4 | 2 3 | ifcli | ⊢ if ( 𝑥 = 𝐾 , 1 , 0 ) ∈ ℕ0 |
| 5 | 4 | a1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐼 ) → if ( 𝑥 = 𝐾 , 1 , 0 ) ∈ ℕ0 ) |
| 6 | 5 | fmpttd | ⊢ ( ⊤ → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝐾 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
| 7 | 6 | mptru | ⊢ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝐾 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 |
| 8 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝐾 , 1 , 0 ) ) = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝐾 , 1 , 0 ) ) | |
| 9 | 8 | mptpreima | ⊢ ( ◡ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝐾 , 1 , 0 ) ) “ ℕ ) = { 𝑥 ∈ 𝐼 ∣ if ( 𝑥 = 𝐾 , 1 , 0 ) ∈ ℕ } |
| 10 | snfi | ⊢ { 𝐾 } ∈ Fin | |
| 11 | inss1 | ⊢ ( { 𝑥 ∣ 𝑥 = 𝐾 } ∩ 𝐼 ) ⊆ { 𝑥 ∣ 𝑥 = 𝐾 } | |
| 12 | dfrab2 | ⊢ { 𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾 } = ( { 𝑥 ∣ 𝑥 = 𝐾 } ∩ 𝐼 ) | |
| 13 | df-sn | ⊢ { 𝐾 } = { 𝑥 ∣ 𝑥 = 𝐾 } | |
| 14 | 11 12 13 | 3sstr4i | ⊢ { 𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾 } ⊆ { 𝐾 } |
| 15 | ssfi | ⊢ ( ( { 𝐾 } ∈ Fin ∧ { 𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾 } ⊆ { 𝐾 } ) → { 𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾 } ∈ Fin ) | |
| 16 | 10 14 15 | mp2an | ⊢ { 𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾 } ∈ Fin |
| 17 | 0nnn | ⊢ ¬ 0 ∈ ℕ | |
| 18 | iffalse | ⊢ ( ¬ 𝑥 = 𝐾 → if ( 𝑥 = 𝐾 , 1 , 0 ) = 0 ) | |
| 19 | 18 | eleq1d | ⊢ ( ¬ 𝑥 = 𝐾 → ( if ( 𝑥 = 𝐾 , 1 , 0 ) ∈ ℕ ↔ 0 ∈ ℕ ) ) |
| 20 | 17 19 | mtbiri | ⊢ ( ¬ 𝑥 = 𝐾 → ¬ if ( 𝑥 = 𝐾 , 1 , 0 ) ∈ ℕ ) |
| 21 | 20 | con4i | ⊢ ( if ( 𝑥 = 𝐾 , 1 , 0 ) ∈ ℕ → 𝑥 = 𝐾 ) |
| 22 | 21 | a1i | ⊢ ( 𝑥 ∈ 𝐼 → ( if ( 𝑥 = 𝐾 , 1 , 0 ) ∈ ℕ → 𝑥 = 𝐾 ) ) |
| 23 | 22 | ss2rabi | ⊢ { 𝑥 ∈ 𝐼 ∣ if ( 𝑥 = 𝐾 , 1 , 0 ) ∈ ℕ } ⊆ { 𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾 } |
| 24 | ssfi | ⊢ ( ( { 𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾 } ∈ Fin ∧ { 𝑥 ∈ 𝐼 ∣ if ( 𝑥 = 𝐾 , 1 , 0 ) ∈ ℕ } ⊆ { 𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾 } ) → { 𝑥 ∈ 𝐼 ∣ if ( 𝑥 = 𝐾 , 1 , 0 ) ∈ ℕ } ∈ Fin ) | |
| 25 | 16 23 24 | mp2an | ⊢ { 𝑥 ∈ 𝐼 ∣ if ( 𝑥 = 𝐾 , 1 , 0 ) ∈ ℕ } ∈ Fin |
| 26 | 9 25 | eqeltri | ⊢ ( ◡ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝐾 , 1 , 0 ) ) “ ℕ ) ∈ Fin |
| 27 | 7 26 | pm3.2i | ⊢ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝐾 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝐾 , 1 , 0 ) ) “ ℕ ) ∈ Fin ) |
| 28 | 1 | psrbag | ⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝐾 , 1 , 0 ) ) ∈ 𝐷 ↔ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝐾 , 1 , 0 ) ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝐾 , 1 , 0 ) ) “ ℕ ) ∈ Fin ) ) ) |
| 29 | 27 28 | mpbiri | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝐾 , 1 , 0 ) ) ∈ 𝐷 ) |