This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
||
| uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| uniioombl.a | |- A = U. ran ( (,) o. F ) |
||
| uniioombl.e | |- ( ph -> ( vol* ` E ) e. RR ) |
||
| uniioombl.c | |- ( ph -> C e. RR+ ) |
||
| uniioombl.g | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| uniioombl.s | |- ( ph -> E C_ U. ran ( (,) o. G ) ) |
||
| uniioombl.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
||
| uniioombl.v | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
||
| uniioombl.m | |- ( ph -> M e. NN ) |
||
| uniioombl.m2 | |- ( ph -> ( abs ` ( ( T ` M ) - sup ( ran T , RR* , < ) ) ) < C ) |
||
| uniioombl.k | |- K = U. ( ( (,) o. G ) " ( 1 ... M ) ) |
||
| Assertion | uniioombllem3 | |- ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) < ( ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) + ( C + C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 2 | uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
|
| 3 | uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 4 | uniioombl.a | |- A = U. ran ( (,) o. F ) |
|
| 5 | uniioombl.e | |- ( ph -> ( vol* ` E ) e. RR ) |
|
| 6 | uniioombl.c | |- ( ph -> C e. RR+ ) |
|
| 7 | uniioombl.g | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 8 | uniioombl.s | |- ( ph -> E C_ U. ran ( (,) o. G ) ) |
|
| 9 | uniioombl.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
|
| 10 | uniioombl.v | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
|
| 11 | uniioombl.m | |- ( ph -> M e. NN ) |
|
| 12 | uniioombl.m2 | |- ( ph -> ( abs ` ( ( T ` M ) - sup ( ran T , RR* , < ) ) ) < C ) |
|
| 13 | uniioombl.k | |- K = U. ( ( (,) o. G ) " ( 1 ... M ) ) |
|
| 14 | inss1 | |- ( E i^i A ) C_ E |
|
| 15 | 14 | a1i | |- ( ph -> ( E i^i A ) C_ E ) |
| 16 | 7 | uniiccdif | |- ( ph -> ( U. ran ( (,) o. G ) C_ U. ran ( [,] o. G ) /\ ( vol* ` ( U. ran ( [,] o. G ) \ U. ran ( (,) o. G ) ) ) = 0 ) ) |
| 17 | 16 | simpld | |- ( ph -> U. ran ( (,) o. G ) C_ U. ran ( [,] o. G ) ) |
| 18 | ovolficcss | |- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. G ) C_ RR ) |
|
| 19 | 7 18 | syl | |- ( ph -> U. ran ( [,] o. G ) C_ RR ) |
| 20 | 17 19 | sstrd | |- ( ph -> U. ran ( (,) o. G ) C_ RR ) |
| 21 | 8 20 | sstrd | |- ( ph -> E C_ RR ) |
| 22 | ovolsscl | |- ( ( ( E i^i A ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E i^i A ) ) e. RR ) |
|
| 23 | 15 21 5 22 | syl3anc | |- ( ph -> ( vol* ` ( E i^i A ) ) e. RR ) |
| 24 | difssd | |- ( ph -> ( E \ A ) C_ E ) |
|
| 25 | ovolsscl | |- ( ( ( E \ A ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E \ A ) ) e. RR ) |
|
| 26 | 24 21 5 25 | syl3anc | |- ( ph -> ( vol* ` ( E \ A ) ) e. RR ) |
| 27 | inss1 | |- ( K i^i A ) C_ K |
|
| 28 | 27 | a1i | |- ( ph -> ( K i^i A ) C_ K ) |
| 29 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | uniioombllem3a | |- ( ph -> ( K = U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) /\ ( vol* ` K ) e. RR ) ) |
| 30 | 29 | simpld | |- ( ph -> K = U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) |
| 31 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 32 | elfznn | |- ( j e. ( 1 ... M ) -> j e. NN ) |
|
| 33 | ffvelcdm | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( G ` j ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 34 | 7 32 33 | syl2an | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( G ` j ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 35 | 31 34 | sselid | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( G ` j ) e. ( RR X. RR ) ) |
| 36 | 1st2nd2 | |- ( ( G ` j ) e. ( RR X. RR ) -> ( G ` j ) = <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
|
| 37 | 35 36 | syl | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( G ` j ) = <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
| 38 | 37 | fveq2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( (,) ` ( G ` j ) ) = ( (,) ` <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) ) |
| 39 | df-ov | |- ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) = ( (,) ` <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
|
| 40 | 38 39 | eqtr4di | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( (,) ` ( G ` j ) ) = ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) |
| 41 | ioossre | |- ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) C_ RR |
|
| 42 | 40 41 | eqsstrdi | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( (,) ` ( G ` j ) ) C_ RR ) |
| 43 | 42 | ralrimiva | |- ( ph -> A. j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) C_ RR ) |
| 44 | iunss | |- ( U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) C_ RR <-> A. j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) C_ RR ) |
|
| 45 | 43 44 | sylibr | |- ( ph -> U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) C_ RR ) |
| 46 | 30 45 | eqsstrd | |- ( ph -> K C_ RR ) |
| 47 | 29 | simprd | |- ( ph -> ( vol* ` K ) e. RR ) |
| 48 | ovolsscl | |- ( ( ( K i^i A ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` ( K i^i A ) ) e. RR ) |
|
| 49 | 28 46 47 48 | syl3anc | |- ( ph -> ( vol* ` ( K i^i A ) ) e. RR ) |
| 50 | 6 | rpred | |- ( ph -> C e. RR ) |
| 51 | 49 50 | readdcld | |- ( ph -> ( ( vol* ` ( K i^i A ) ) + C ) e. RR ) |
| 52 | difssd | |- ( ph -> ( K \ A ) C_ K ) |
|
| 53 | ovolsscl | |- ( ( ( K \ A ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` ( K \ A ) ) e. RR ) |
|
| 54 | 52 46 47 53 | syl3anc | |- ( ph -> ( vol* ` ( K \ A ) ) e. RR ) |
| 55 | 54 50 | readdcld | |- ( ph -> ( ( vol* ` ( K \ A ) ) + C ) e. RR ) |
| 56 | ssun2 | |- U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) C_ ( K u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) |
|
| 57 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 58 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 59 | 31 58 | sstri | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 60 | fss | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> G : NN --> ( RR* X. RR* ) ) |
|
| 61 | 7 59 60 | sylancl | |- ( ph -> G : NN --> ( RR* X. RR* ) ) |
| 62 | fco | |- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ G : NN --> ( RR* X. RR* ) ) -> ( (,) o. G ) : NN --> ~P RR ) |
|
| 63 | 57 61 62 | sylancr | |- ( ph -> ( (,) o. G ) : NN --> ~P RR ) |
| 64 | 63 | ffnd | |- ( ph -> ( (,) o. G ) Fn NN ) |
| 65 | fnima | |- ( ( (,) o. G ) Fn NN -> ( ( (,) o. G ) " NN ) = ran ( (,) o. G ) ) |
|
| 66 | 64 65 | syl | |- ( ph -> ( ( (,) o. G ) " NN ) = ran ( (,) o. G ) ) |
| 67 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 68 | 11 | peano2nnd | |- ( ph -> ( M + 1 ) e. NN ) |
| 69 | 68 67 | eleqtrdi | |- ( ph -> ( M + 1 ) e. ( ZZ>= ` 1 ) ) |
| 70 | uzsplit | |- ( ( M + 1 ) e. ( ZZ>= ` 1 ) -> ( ZZ>= ` 1 ) = ( ( 1 ... ( ( M + 1 ) - 1 ) ) u. ( ZZ>= ` ( M + 1 ) ) ) ) |
|
| 71 | 69 70 | syl | |- ( ph -> ( ZZ>= ` 1 ) = ( ( 1 ... ( ( M + 1 ) - 1 ) ) u. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 72 | 67 71 | eqtrid | |- ( ph -> NN = ( ( 1 ... ( ( M + 1 ) - 1 ) ) u. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 73 | 11 | nncnd | |- ( ph -> M e. CC ) |
| 74 | ax-1cn | |- 1 e. CC |
|
| 75 | pncan | |- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - 1 ) = M ) |
|
| 76 | 73 74 75 | sylancl | |- ( ph -> ( ( M + 1 ) - 1 ) = M ) |
| 77 | 76 | oveq2d | |- ( ph -> ( 1 ... ( ( M + 1 ) - 1 ) ) = ( 1 ... M ) ) |
| 78 | 77 | uneq1d | |- ( ph -> ( ( 1 ... ( ( M + 1 ) - 1 ) ) u. ( ZZ>= ` ( M + 1 ) ) ) = ( ( 1 ... M ) u. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 79 | 72 78 | eqtrd | |- ( ph -> NN = ( ( 1 ... M ) u. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 80 | 79 | imaeq2d | |- ( ph -> ( ( (,) o. G ) " NN ) = ( ( (,) o. G ) " ( ( 1 ... M ) u. ( ZZ>= ` ( M + 1 ) ) ) ) ) |
| 81 | 66 80 | eqtr3d | |- ( ph -> ran ( (,) o. G ) = ( ( (,) o. G ) " ( ( 1 ... M ) u. ( ZZ>= ` ( M + 1 ) ) ) ) ) |
| 82 | imaundi | |- ( ( (,) o. G ) " ( ( 1 ... M ) u. ( ZZ>= ` ( M + 1 ) ) ) ) = ( ( ( (,) o. G ) " ( 1 ... M ) ) u. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) |
|
| 83 | 81 82 | eqtrdi | |- ( ph -> ran ( (,) o. G ) = ( ( ( (,) o. G ) " ( 1 ... M ) ) u. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) |
| 84 | 83 | unieqd | |- ( ph -> U. ran ( (,) o. G ) = U. ( ( ( (,) o. G ) " ( 1 ... M ) ) u. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) |
| 85 | uniun | |- U. ( ( ( (,) o. G ) " ( 1 ... M ) ) u. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) = ( U. ( ( (,) o. G ) " ( 1 ... M ) ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) |
|
| 86 | 84 85 | eqtrdi | |- ( ph -> U. ran ( (,) o. G ) = ( U. ( ( (,) o. G ) " ( 1 ... M ) ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) |
| 87 | 13 | uneq1i | |- ( K u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) = ( U. ( ( (,) o. G ) " ( 1 ... M ) ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) |
| 88 | 86 87 | eqtr4di | |- ( ph -> U. ran ( (,) o. G ) = ( K u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) |
| 89 | 56 88 | sseqtrrid | |- ( ph -> U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) C_ U. ran ( (,) o. G ) ) |
| 90 | 1 2 3 4 5 6 7 8 9 10 | uniioombllem1 | |- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
| 91 | ssid | |- U. ran ( (,) o. G ) C_ U. ran ( (,) o. G ) |
|
| 92 | 9 | ovollb | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ U. ran ( (,) o. G ) C_ U. ran ( (,) o. G ) ) -> ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) ) |
| 93 | 7 91 92 | sylancl | |- ( ph -> ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) ) |
| 94 | ovollecl | |- ( ( U. ran ( (,) o. G ) C_ RR /\ sup ( ran T , RR* , < ) e. RR /\ ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) ) -> ( vol* ` U. ran ( (,) o. G ) ) e. RR ) |
|
| 95 | 20 90 93 94 | syl3anc | |- ( ph -> ( vol* ` U. ran ( (,) o. G ) ) e. RR ) |
| 96 | ovolsscl | |- ( ( U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) C_ U. ran ( (,) o. G ) /\ U. ran ( (,) o. G ) C_ RR /\ ( vol* ` U. ran ( (,) o. G ) ) e. RR ) -> ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) e. RR ) |
|
| 97 | 89 20 95 96 | syl3anc | |- ( ph -> ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) e. RR ) |
| 98 | 49 97 | readdcld | |- ( ph -> ( ( vol* ` ( K i^i A ) ) + ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) e. RR ) |
| 99 | unss1 | |- ( ( K i^i A ) C_ K -> ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) C_ ( K u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) |
|
| 100 | 27 99 | ax-mp | |- ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) C_ ( K u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) |
| 101 | 100 88 | sseqtrrid | |- ( ph -> ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) C_ U. ran ( (,) o. G ) ) |
| 102 | ovolsscl | |- ( ( ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) C_ U. ran ( (,) o. G ) /\ U. ran ( (,) o. G ) C_ RR /\ ( vol* ` U. ran ( (,) o. G ) ) e. RR ) -> ( vol* ` ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) e. RR ) |
|
| 103 | 101 20 95 102 | syl3anc | |- ( ph -> ( vol* ` ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) e. RR ) |
| 104 | 8 88 | sseqtrd | |- ( ph -> E C_ ( K u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) |
| 105 | 104 | ssrind | |- ( ph -> ( E i^i A ) C_ ( ( K u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) i^i A ) ) |
| 106 | indir | |- ( ( K u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) i^i A ) = ( ( K i^i A ) u. ( U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) i^i A ) ) |
|
| 107 | inss1 | |- ( U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) i^i A ) C_ U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) |
|
| 108 | unss2 | |- ( ( U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) i^i A ) C_ U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) -> ( ( K i^i A ) u. ( U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) i^i A ) ) C_ ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) |
|
| 109 | 107 108 | ax-mp | |- ( ( K i^i A ) u. ( U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) i^i A ) ) C_ ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) |
| 110 | 106 109 | eqsstri | |- ( ( K u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) i^i A ) C_ ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) |
| 111 | 105 110 | sstrdi | |- ( ph -> ( E i^i A ) C_ ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) |
| 112 | 101 20 | sstrd | |- ( ph -> ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) C_ RR ) |
| 113 | ovolss | |- ( ( ( E i^i A ) C_ ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) /\ ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) C_ RR ) -> ( vol* ` ( E i^i A ) ) <_ ( vol* ` ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) ) |
|
| 114 | 111 112 113 | syl2anc | |- ( ph -> ( vol* ` ( E i^i A ) ) <_ ( vol* ` ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) ) |
| 115 | 28 46 | sstrd | |- ( ph -> ( K i^i A ) C_ RR ) |
| 116 | 89 20 | sstrd | |- ( ph -> U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) C_ RR ) |
| 117 | ovolun | |- ( ( ( ( K i^i A ) C_ RR /\ ( vol* ` ( K i^i A ) ) e. RR ) /\ ( U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) C_ RR /\ ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) e. RR ) ) -> ( vol* ` ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) <_ ( ( vol* ` ( K i^i A ) ) + ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) ) |
|
| 118 | 115 49 116 97 117 | syl22anc | |- ( ph -> ( vol* ` ( ( K i^i A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) <_ ( ( vol* ` ( K i^i A ) ) + ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) ) |
| 119 | 23 103 98 114 118 | letrd | |- ( ph -> ( vol* ` ( E i^i A ) ) <_ ( ( vol* ` ( K i^i A ) ) + ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) ) |
| 120 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 121 | eqid | |- ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) |
|
| 122 | 121 9 | ovolsf | |- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> T : NN --> ( 0 [,) +oo ) ) |
| 123 | 7 122 | syl | |- ( ph -> T : NN --> ( 0 [,) +oo ) ) |
| 124 | 123 11 | ffvelcdmd | |- ( ph -> ( T ` M ) e. ( 0 [,) +oo ) ) |
| 125 | 120 124 | sselid | |- ( ph -> ( T ` M ) e. RR ) |
| 126 | 90 125 | resubcld | |- ( ph -> ( sup ( ran T , RR* , < ) - ( T ` M ) ) e. RR ) |
| 127 | 97 | rexrd | |- ( ph -> ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) e. RR* ) |
| 128 | id | |- ( z e. NN -> z e. NN ) |
|
| 129 | nnaddcl | |- ( ( z e. NN /\ M e. NN ) -> ( z + M ) e. NN ) |
|
| 130 | 128 11 129 | syl2anr | |- ( ( ph /\ z e. NN ) -> ( z + M ) e. NN ) |
| 131 | 7 | ffvelcdmda | |- ( ( ph /\ ( z + M ) e. NN ) -> ( G ` ( z + M ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 132 | 130 131 | syldan | |- ( ( ph /\ z e. NN ) -> ( G ` ( z + M ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 133 | 132 | fmpttd | |- ( ph -> ( z e. NN |-> ( G ` ( z + M ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 134 | eqid | |- ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) = ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) |
|
| 135 | eqid | |- seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) = seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) |
|
| 136 | 134 135 | ovolsf | |- ( ( z e. NN |-> ( G ` ( z + M ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) -> seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) : NN --> ( 0 [,) +oo ) ) |
| 137 | 133 136 | syl | |- ( ph -> seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) : NN --> ( 0 [,) +oo ) ) |
| 138 | 137 | frnd | |- ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) C_ ( 0 [,) +oo ) ) |
| 139 | icossxr | |- ( 0 [,) +oo ) C_ RR* |
|
| 140 | 138 139 | sstrdi | |- ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) C_ RR* ) |
| 141 | supxrcl | |- ( ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) C_ RR* -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) , RR* , < ) e. RR* ) |
|
| 142 | 140 141 | syl | |- ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) , RR* , < ) e. RR* ) |
| 143 | 126 | rexrd | |- ( ph -> ( sup ( ran T , RR* , < ) - ( T ` M ) ) e. RR* ) |
| 144 | 1zzd | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> 1 e. ZZ ) |
|
| 145 | 11 | nnzd | |- ( ph -> M e. ZZ ) |
| 146 | 145 | adantr | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> M e. ZZ ) |
| 147 | addcom | |- ( ( M e. CC /\ 1 e. CC ) -> ( M + 1 ) = ( 1 + M ) ) |
|
| 148 | 73 74 147 | sylancl | |- ( ph -> ( M + 1 ) = ( 1 + M ) ) |
| 149 | 148 | fveq2d | |- ( ph -> ( ZZ>= ` ( M + 1 ) ) = ( ZZ>= ` ( 1 + M ) ) ) |
| 150 | 149 | eleq2d | |- ( ph -> ( x e. ( ZZ>= ` ( M + 1 ) ) <-> x e. ( ZZ>= ` ( 1 + M ) ) ) ) |
| 151 | 150 | biimpa | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> x e. ( ZZ>= ` ( 1 + M ) ) ) |
| 152 | eluzsub | |- ( ( 1 e. ZZ /\ M e. ZZ /\ x e. ( ZZ>= ` ( 1 + M ) ) ) -> ( x - M ) e. ( ZZ>= ` 1 ) ) |
|
| 153 | 144 146 151 152 | syl3anc | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> ( x - M ) e. ( ZZ>= ` 1 ) ) |
| 154 | 153 67 | eleqtrrdi | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> ( x - M ) e. NN ) |
| 155 | eluzelz | |- ( x e. ( ZZ>= ` ( M + 1 ) ) -> x e. ZZ ) |
|
| 156 | 155 | adantl | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> x e. ZZ ) |
| 157 | 156 | zcnd | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> x e. CC ) |
| 158 | 73 | adantr | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> M e. CC ) |
| 159 | 157 158 | npcand | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( x - M ) + M ) = x ) |
| 160 | 159 | eqcomd | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> x = ( ( x - M ) + M ) ) |
| 161 | oveq1 | |- ( z = ( x - M ) -> ( z + M ) = ( ( x - M ) + M ) ) |
|
| 162 | 161 | rspceeqv | |- ( ( ( x - M ) e. NN /\ x = ( ( x - M ) + M ) ) -> E. z e. NN x = ( z + M ) ) |
| 163 | 154 160 162 | syl2anc | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> E. z e. NN x = ( z + M ) ) |
| 164 | eqid | |- ( z e. NN |-> ( z + M ) ) = ( z e. NN |-> ( z + M ) ) |
|
| 165 | 164 | elrnmpt | |- ( x e. _V -> ( x e. ran ( z e. NN |-> ( z + M ) ) <-> E. z e. NN x = ( z + M ) ) ) |
| 166 | 165 | elv | |- ( x e. ran ( z e. NN |-> ( z + M ) ) <-> E. z e. NN x = ( z + M ) ) |
| 167 | 163 166 | sylibr | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> x e. ran ( z e. NN |-> ( z + M ) ) ) |
| 168 | 167 | ex | |- ( ph -> ( x e. ( ZZ>= ` ( M + 1 ) ) -> x e. ran ( z e. NN |-> ( z + M ) ) ) ) |
| 169 | 168 | ssrdv | |- ( ph -> ( ZZ>= ` ( M + 1 ) ) C_ ran ( z e. NN |-> ( z + M ) ) ) |
| 170 | imass2 | |- ( ( ZZ>= ` ( M + 1 ) ) C_ ran ( z e. NN |-> ( z + M ) ) -> ( G " ( ZZ>= ` ( M + 1 ) ) ) C_ ( G " ran ( z e. NN |-> ( z + M ) ) ) ) |
|
| 171 | 169 170 | syl | |- ( ph -> ( G " ( ZZ>= ` ( M + 1 ) ) ) C_ ( G " ran ( z e. NN |-> ( z + M ) ) ) ) |
| 172 | rnco2 | |- ran ( G o. ( z e. NN |-> ( z + M ) ) ) = ( G " ran ( z e. NN |-> ( z + M ) ) ) |
|
| 173 | 7 130 | cofmpt | |- ( ph -> ( G o. ( z e. NN |-> ( z + M ) ) ) = ( z e. NN |-> ( G ` ( z + M ) ) ) ) |
| 174 | 173 | rneqd | |- ( ph -> ran ( G o. ( z e. NN |-> ( z + M ) ) ) = ran ( z e. NN |-> ( G ` ( z + M ) ) ) ) |
| 175 | 172 174 | eqtr3id | |- ( ph -> ( G " ran ( z e. NN |-> ( z + M ) ) ) = ran ( z e. NN |-> ( G ` ( z + M ) ) ) ) |
| 176 | 171 175 | sseqtrd | |- ( ph -> ( G " ( ZZ>= ` ( M + 1 ) ) ) C_ ran ( z e. NN |-> ( G ` ( z + M ) ) ) ) |
| 177 | imass2 | |- ( ( G " ( ZZ>= ` ( M + 1 ) ) ) C_ ran ( z e. NN |-> ( G ` ( z + M ) ) ) -> ( (,) " ( G " ( ZZ>= ` ( M + 1 ) ) ) ) C_ ( (,) " ran ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) |
|
| 178 | 176 177 | syl | |- ( ph -> ( (,) " ( G " ( ZZ>= ` ( M + 1 ) ) ) ) C_ ( (,) " ran ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) |
| 179 | imaco | |- ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) = ( (,) " ( G " ( ZZ>= ` ( M + 1 ) ) ) ) |
|
| 180 | rnco2 | |- ran ( (,) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) = ( (,) " ran ( z e. NN |-> ( G ` ( z + M ) ) ) ) |
|
| 181 | 178 179 180 | 3sstr4g | |- ( ph -> ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) C_ ran ( (,) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) |
| 182 | 181 | unissd | |- ( ph -> U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) C_ U. ran ( (,) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) |
| 183 | 135 | ovollb | |- ( ( ( z e. NN |-> ( G ` ( z + M ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) /\ U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) C_ U. ran ( (,) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) -> ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) , RR* , < ) ) |
| 184 | 133 182 183 | syl2anc | |- ( ph -> ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) , RR* , < ) ) |
| 185 | 123 | frnd | |- ( ph -> ran T C_ ( 0 [,) +oo ) ) |
| 186 | 185 139 | sstrdi | |- ( ph -> ran T C_ RR* ) |
| 187 | 9 | fveq1i | |- ( T ` ( M + n ) ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` ( M + n ) ) |
| 188 | 11 | nnred | |- ( ph -> M e. RR ) |
| 189 | 188 | ltp1d | |- ( ph -> M < ( M + 1 ) ) |
| 190 | fzdisj | |- ( M < ( M + 1 ) -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... ( M + n ) ) ) = (/) ) |
|
| 191 | 189 190 | syl | |- ( ph -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... ( M + n ) ) ) = (/) ) |
| 192 | 191 | adantr | |- ( ( ph /\ n e. NN ) -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... ( M + n ) ) ) = (/) ) |
| 193 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 194 | nn0addge1 | |- ( ( M e. RR /\ n e. NN0 ) -> M <_ ( M + n ) ) |
|
| 195 | 188 193 194 | syl2an | |- ( ( ph /\ n e. NN ) -> M <_ ( M + n ) ) |
| 196 | 11 | adantr | |- ( ( ph /\ n e. NN ) -> M e. NN ) |
| 197 | 196 67 | eleqtrdi | |- ( ( ph /\ n e. NN ) -> M e. ( ZZ>= ` 1 ) ) |
| 198 | nnaddcl | |- ( ( M e. NN /\ n e. NN ) -> ( M + n ) e. NN ) |
|
| 199 | 11 198 | sylan | |- ( ( ph /\ n e. NN ) -> ( M + n ) e. NN ) |
| 200 | 199 | nnzd | |- ( ( ph /\ n e. NN ) -> ( M + n ) e. ZZ ) |
| 201 | elfz5 | |- ( ( M e. ( ZZ>= ` 1 ) /\ ( M + n ) e. ZZ ) -> ( M e. ( 1 ... ( M + n ) ) <-> M <_ ( M + n ) ) ) |
|
| 202 | 197 200 201 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( M e. ( 1 ... ( M + n ) ) <-> M <_ ( M + n ) ) ) |
| 203 | 195 202 | mpbird | |- ( ( ph /\ n e. NN ) -> M e. ( 1 ... ( M + n ) ) ) |
| 204 | fzsplit | |- ( M e. ( 1 ... ( M + n ) ) -> ( 1 ... ( M + n ) ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... ( M + n ) ) ) ) |
|
| 205 | 203 204 | syl | |- ( ( ph /\ n e. NN ) -> ( 1 ... ( M + n ) ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... ( M + n ) ) ) ) |
| 206 | fzfid | |- ( ( ph /\ n e. NN ) -> ( 1 ... ( M + n ) ) e. Fin ) |
|
| 207 | 7 | adantr | |- ( ( ph /\ n e. NN ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 208 | elfznn | |- ( j e. ( 1 ... ( M + n ) ) -> j e. NN ) |
|
| 209 | ovolfcl | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) |
|
| 210 | 207 208 209 | syl2an | |- ( ( ( ph /\ n e. NN ) /\ j e. ( 1 ... ( M + n ) ) ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) |
| 211 | 210 | simp2d | |- ( ( ( ph /\ n e. NN ) /\ j e. ( 1 ... ( M + n ) ) ) -> ( 2nd ` ( G ` j ) ) e. RR ) |
| 212 | 210 | simp1d | |- ( ( ( ph /\ n e. NN ) /\ j e. ( 1 ... ( M + n ) ) ) -> ( 1st ` ( G ` j ) ) e. RR ) |
| 213 | 211 212 | resubcld | |- ( ( ( ph /\ n e. NN ) /\ j e. ( 1 ... ( M + n ) ) ) -> ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) e. RR ) |
| 214 | 213 | recnd | |- ( ( ( ph /\ n e. NN ) /\ j e. ( 1 ... ( M + n ) ) ) -> ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) e. CC ) |
| 215 | 192 205 206 214 | fsumsplit | |- ( ( ph /\ n e. NN ) -> sum_ j e. ( 1 ... ( M + n ) ) ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) = ( sum_ j e. ( 1 ... M ) ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) + sum_ j e. ( ( M + 1 ) ... ( M + n ) ) ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) ) |
| 216 | 121 | ovolfsval | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( ( ( abs o. - ) o. G ) ` j ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
| 217 | 207 208 216 | syl2an | |- ( ( ( ph /\ n e. NN ) /\ j e. ( 1 ... ( M + n ) ) ) -> ( ( ( abs o. - ) o. G ) ` j ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
| 218 | 199 67 | eleqtrdi | |- ( ( ph /\ n e. NN ) -> ( M + n ) e. ( ZZ>= ` 1 ) ) |
| 219 | 217 218 214 | fsumser | |- ( ( ph /\ n e. NN ) -> sum_ j e. ( 1 ... ( M + n ) ) ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` ( M + n ) ) ) |
| 220 | 7 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ j e. ( 1 ... M ) ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 221 | 32 | adantl | |- ( ( ( ph /\ n e. NN ) /\ j e. ( 1 ... M ) ) -> j e. NN ) |
| 222 | 220 221 216 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ j e. ( 1 ... M ) ) -> ( ( ( abs o. - ) o. G ) ` j ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
| 223 | 7 32 209 | syl2an | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) |
| 224 | 223 | simp2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( 2nd ` ( G ` j ) ) e. RR ) |
| 225 | 223 | simp1d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( 1st ` ( G ` j ) ) e. RR ) |
| 226 | 224 225 | resubcld | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) e. RR ) |
| 227 | 226 | adantlr | |- ( ( ( ph /\ n e. NN ) /\ j e. ( 1 ... M ) ) -> ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) e. RR ) |
| 228 | 227 | recnd | |- ( ( ( ph /\ n e. NN ) /\ j e. ( 1 ... M ) ) -> ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) e. CC ) |
| 229 | 222 197 228 | fsumser | |- ( ( ph /\ n e. NN ) -> sum_ j e. ( 1 ... M ) ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` M ) ) |
| 230 | 9 | fveq1i | |- ( T ` M ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` M ) |
| 231 | 229 230 | eqtr4di | |- ( ( ph /\ n e. NN ) -> sum_ j e. ( 1 ... M ) ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) = ( T ` M ) ) |
| 232 | 196 | nnzd | |- ( ( ph /\ n e. NN ) -> M e. ZZ ) |
| 233 | 232 | peano2zd | |- ( ( ph /\ n e. NN ) -> ( M + 1 ) e. ZZ ) |
| 234 | 7 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ j e. ( ( M + 1 ) ... ( M + n ) ) ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 235 | 196 | peano2nnd | |- ( ( ph /\ n e. NN ) -> ( M + 1 ) e. NN ) |
| 236 | elfzuz | |- ( j e. ( ( M + 1 ) ... ( M + n ) ) -> j e. ( ZZ>= ` ( M + 1 ) ) ) |
|
| 237 | eluznn | |- ( ( ( M + 1 ) e. NN /\ j e. ( ZZ>= ` ( M + 1 ) ) ) -> j e. NN ) |
|
| 238 | 235 236 237 | syl2an | |- ( ( ( ph /\ n e. NN ) /\ j e. ( ( M + 1 ) ... ( M + n ) ) ) -> j e. NN ) |
| 239 | 234 238 209 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ j e. ( ( M + 1 ) ... ( M + n ) ) ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) |
| 240 | 239 | simp2d | |- ( ( ( ph /\ n e. NN ) /\ j e. ( ( M + 1 ) ... ( M + n ) ) ) -> ( 2nd ` ( G ` j ) ) e. RR ) |
| 241 | 239 | simp1d | |- ( ( ( ph /\ n e. NN ) /\ j e. ( ( M + 1 ) ... ( M + n ) ) ) -> ( 1st ` ( G ` j ) ) e. RR ) |
| 242 | 240 241 | resubcld | |- ( ( ( ph /\ n e. NN ) /\ j e. ( ( M + 1 ) ... ( M + n ) ) ) -> ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) e. RR ) |
| 243 | 242 | recnd | |- ( ( ( ph /\ n e. NN ) /\ j e. ( ( M + 1 ) ... ( M + n ) ) ) -> ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) e. CC ) |
| 244 | 2fveq3 | |- ( j = ( k + M ) -> ( 2nd ` ( G ` j ) ) = ( 2nd ` ( G ` ( k + M ) ) ) ) |
|
| 245 | 2fveq3 | |- ( j = ( k + M ) -> ( 1st ` ( G ` j ) ) = ( 1st ` ( G ` ( k + M ) ) ) ) |
|
| 246 | 244 245 | oveq12d | |- ( j = ( k + M ) -> ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) = ( ( 2nd ` ( G ` ( k + M ) ) ) - ( 1st ` ( G ` ( k + M ) ) ) ) ) |
| 247 | 232 233 200 243 246 | fsumshftm | |- ( ( ph /\ n e. NN ) -> sum_ j e. ( ( M + 1 ) ... ( M + n ) ) ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) = sum_ k e. ( ( ( M + 1 ) - M ) ... ( ( M + n ) - M ) ) ( ( 2nd ` ( G ` ( k + M ) ) ) - ( 1st ` ( G ` ( k + M ) ) ) ) ) |
| 248 | 196 | nncnd | |- ( ( ph /\ n e. NN ) -> M e. CC ) |
| 249 | pncan2 | |- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - M ) = 1 ) |
|
| 250 | 248 74 249 | sylancl | |- ( ( ph /\ n e. NN ) -> ( ( M + 1 ) - M ) = 1 ) |
| 251 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 252 | 251 | adantl | |- ( ( ph /\ n e. NN ) -> n e. CC ) |
| 253 | 248 252 | pncan2d | |- ( ( ph /\ n e. NN ) -> ( ( M + n ) - M ) = n ) |
| 254 | 250 253 | oveq12d | |- ( ( ph /\ n e. NN ) -> ( ( ( M + 1 ) - M ) ... ( ( M + n ) - M ) ) = ( 1 ... n ) ) |
| 255 | 254 | sumeq1d | |- ( ( ph /\ n e. NN ) -> sum_ k e. ( ( ( M + 1 ) - M ) ... ( ( M + n ) - M ) ) ( ( 2nd ` ( G ` ( k + M ) ) ) - ( 1st ` ( G ` ( k + M ) ) ) ) = sum_ k e. ( 1 ... n ) ( ( 2nd ` ( G ` ( k + M ) ) ) - ( 1st ` ( G ` ( k + M ) ) ) ) ) |
| 256 | 133 | adantr | |- ( ( ph /\ n e. NN ) -> ( z e. NN |-> ( G ` ( z + M ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 257 | elfznn | |- ( k e. ( 1 ... n ) -> k e. NN ) |
|
| 258 | 134 | ovolfsval | |- ( ( ( z e. NN |-> ( G ` ( z + M ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) /\ k e. NN ) -> ( ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ` k ) = ( ( 2nd ` ( ( z e. NN |-> ( G ` ( z + M ) ) ) ` k ) ) - ( 1st ` ( ( z e. NN |-> ( G ` ( z + M ) ) ) ` k ) ) ) ) |
| 259 | 256 257 258 | syl2an | |- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ` k ) = ( ( 2nd ` ( ( z e. NN |-> ( G ` ( z + M ) ) ) ` k ) ) - ( 1st ` ( ( z e. NN |-> ( G ` ( z + M ) ) ) ` k ) ) ) ) |
| 260 | 257 | adantl | |- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. NN ) |
| 261 | fvoveq1 | |- ( z = k -> ( G ` ( z + M ) ) = ( G ` ( k + M ) ) ) |
|
| 262 | eqid | |- ( z e. NN |-> ( G ` ( z + M ) ) ) = ( z e. NN |-> ( G ` ( z + M ) ) ) |
|
| 263 | fvex | |- ( G ` ( k + M ) ) e. _V |
|
| 264 | 261 262 263 | fvmpt | |- ( k e. NN -> ( ( z e. NN |-> ( G ` ( z + M ) ) ) ` k ) = ( G ` ( k + M ) ) ) |
| 265 | 260 264 | syl | |- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( z e. NN |-> ( G ` ( z + M ) ) ) ` k ) = ( G ` ( k + M ) ) ) |
| 266 | 265 | fveq2d | |- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( 2nd ` ( ( z e. NN |-> ( G ` ( z + M ) ) ) ` k ) ) = ( 2nd ` ( G ` ( k + M ) ) ) ) |
| 267 | 265 | fveq2d | |- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( 1st ` ( ( z e. NN |-> ( G ` ( z + M ) ) ) ` k ) ) = ( 1st ` ( G ` ( k + M ) ) ) ) |
| 268 | 266 267 | oveq12d | |- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( 2nd ` ( ( z e. NN |-> ( G ` ( z + M ) ) ) ` k ) ) - ( 1st ` ( ( z e. NN |-> ( G ` ( z + M ) ) ) ` k ) ) ) = ( ( 2nd ` ( G ` ( k + M ) ) ) - ( 1st ` ( G ` ( k + M ) ) ) ) ) |
| 269 | 259 268 | eqtrd | |- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ` k ) = ( ( 2nd ` ( G ` ( k + M ) ) ) - ( 1st ` ( G ` ( k + M ) ) ) ) ) |
| 270 | simpr | |- ( ( ph /\ n e. NN ) -> n e. NN ) |
|
| 271 | 270 67 | eleqtrdi | |- ( ( ph /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) |
| 272 | 7 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 273 | nnaddcl | |- ( ( k e. NN /\ M e. NN ) -> ( k + M ) e. NN ) |
|
| 274 | 257 196 273 | syl2anr | |- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( k + M ) e. NN ) |
| 275 | ovolfcl | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( k + M ) e. NN ) -> ( ( 1st ` ( G ` ( k + M ) ) ) e. RR /\ ( 2nd ` ( G ` ( k + M ) ) ) e. RR /\ ( 1st ` ( G ` ( k + M ) ) ) <_ ( 2nd ` ( G ` ( k + M ) ) ) ) ) |
|
| 276 | 272 274 275 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( 1st ` ( G ` ( k + M ) ) ) e. RR /\ ( 2nd ` ( G ` ( k + M ) ) ) e. RR /\ ( 1st ` ( G ` ( k + M ) ) ) <_ ( 2nd ` ( G ` ( k + M ) ) ) ) ) |
| 277 | 276 | simp2d | |- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( 2nd ` ( G ` ( k + M ) ) ) e. RR ) |
| 278 | 276 | simp1d | |- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( 1st ` ( G ` ( k + M ) ) ) e. RR ) |
| 279 | 277 278 | resubcld | |- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( 2nd ` ( G ` ( k + M ) ) ) - ( 1st ` ( G ` ( k + M ) ) ) ) e. RR ) |
| 280 | 279 | recnd | |- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( 2nd ` ( G ` ( k + M ) ) ) - ( 1st ` ( G ` ( k + M ) ) ) ) e. CC ) |
| 281 | 269 271 280 | fsumser | |- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( 2nd ` ( G ` ( k + M ) ) ) - ( 1st ` ( G ` ( k + M ) ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) ) |
| 282 | 247 255 281 | 3eqtrd | |- ( ( ph /\ n e. NN ) -> sum_ j e. ( ( M + 1 ) ... ( M + n ) ) ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) ) |
| 283 | 231 282 | oveq12d | |- ( ( ph /\ n e. NN ) -> ( sum_ j e. ( 1 ... M ) ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) + sum_ j e. ( ( M + 1 ) ... ( M + n ) ) ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) = ( ( T ` M ) + ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) ) ) |
| 284 | 215 219 283 | 3eqtr3d | |- ( ( ph /\ n e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` ( M + n ) ) = ( ( T ` M ) + ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) ) ) |
| 285 | 187 284 | eqtrid | |- ( ( ph /\ n e. NN ) -> ( T ` ( M + n ) ) = ( ( T ` M ) + ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) ) ) |
| 286 | 123 | ffnd | |- ( ph -> T Fn NN ) |
| 287 | fnfvelrn | |- ( ( T Fn NN /\ ( M + n ) e. NN ) -> ( T ` ( M + n ) ) e. ran T ) |
|
| 288 | 286 199 287 | syl2an2r | |- ( ( ph /\ n e. NN ) -> ( T ` ( M + n ) ) e. ran T ) |
| 289 | 285 288 | eqeltrrd | |- ( ( ph /\ n e. NN ) -> ( ( T ` M ) + ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) ) e. ran T ) |
| 290 | supxrub | |- ( ( ran T C_ RR* /\ ( ( T ` M ) + ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) ) e. ran T ) -> ( ( T ` M ) + ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) ) <_ sup ( ran T , RR* , < ) ) |
|
| 291 | 186 289 290 | syl2an2r | |- ( ( ph /\ n e. NN ) -> ( ( T ` M ) + ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) ) <_ sup ( ran T , RR* , < ) ) |
| 292 | 125 | adantr | |- ( ( ph /\ n e. NN ) -> ( T ` M ) e. RR ) |
| 293 | 137 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) e. ( 0 [,) +oo ) ) |
| 294 | 120 293 | sselid | |- ( ( ph /\ n e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) e. RR ) |
| 295 | 90 | adantr | |- ( ( ph /\ n e. NN ) -> sup ( ran T , RR* , < ) e. RR ) |
| 296 | 292 294 295 | leaddsub2d | |- ( ( ph /\ n e. NN ) -> ( ( ( T ` M ) + ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) ) <_ sup ( ran T , RR* , < ) <-> ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) ) ) |
| 297 | 291 296 | mpbid | |- ( ( ph /\ n e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) ) |
| 298 | 297 | ralrimiva | |- ( ph -> A. n e. NN ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) ) |
| 299 | 137 | ffnd | |- ( ph -> seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) Fn NN ) |
| 300 | breq1 | |- ( x = ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) -> ( x <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) <-> ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) ) ) |
|
| 301 | 300 | ralrn | |- ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) Fn NN -> ( A. x e. ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) x <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) <-> A. n e. NN ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) ) ) |
| 302 | 299 301 | syl | |- ( ph -> ( A. x e. ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) x <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) <-> A. n e. NN ( seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) ` n ) <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) ) ) |
| 303 | 298 302 | mpbird | |- ( ph -> A. x e. ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) x <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) ) |
| 304 | supxrleub | |- ( ( ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) C_ RR* /\ ( sup ( ran T , RR* , < ) - ( T ` M ) ) e. RR* ) -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) , RR* , < ) <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) <-> A. x e. ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) x <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) ) ) |
|
| 305 | 140 143 304 | syl2anc | |- ( ph -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) , RR* , < ) <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) <-> A. x e. ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) x <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) ) ) |
| 306 | 303 305 | mpbird | |- ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( z e. NN |-> ( G ` ( z + M ) ) ) ) ) , RR* , < ) <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) ) |
| 307 | 127 142 143 184 306 | xrletrd | |- ( ph -> ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) <_ ( sup ( ran T , RR* , < ) - ( T ` M ) ) ) |
| 308 | 125 90 50 | absdifltd | |- ( ph -> ( ( abs ` ( ( T ` M ) - sup ( ran T , RR* , < ) ) ) < C <-> ( ( sup ( ran T , RR* , < ) - C ) < ( T ` M ) /\ ( T ` M ) < ( sup ( ran T , RR* , < ) + C ) ) ) ) |
| 309 | 12 308 | mpbid | |- ( ph -> ( ( sup ( ran T , RR* , < ) - C ) < ( T ` M ) /\ ( T ` M ) < ( sup ( ran T , RR* , < ) + C ) ) ) |
| 310 | 309 | simpld | |- ( ph -> ( sup ( ran T , RR* , < ) - C ) < ( T ` M ) ) |
| 311 | 90 50 125 310 | ltsub23d | |- ( ph -> ( sup ( ran T , RR* , < ) - ( T ` M ) ) < C ) |
| 312 | 97 126 50 307 311 | lelttrd | |- ( ph -> ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) < C ) |
| 313 | 97 50 49 312 | ltadd2dd | |- ( ph -> ( ( vol* ` ( K i^i A ) ) + ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) < ( ( vol* ` ( K i^i A ) ) + C ) ) |
| 314 | 23 98 51 119 313 | lelttrd | |- ( ph -> ( vol* ` ( E i^i A ) ) < ( ( vol* ` ( K i^i A ) ) + C ) ) |
| 315 | 54 97 | readdcld | |- ( ph -> ( ( vol* ` ( K \ A ) ) + ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) e. RR ) |
| 316 | difss | |- ( K \ A ) C_ K |
|
| 317 | unss1 | |- ( ( K \ A ) C_ K -> ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) C_ ( K u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) |
|
| 318 | 316 317 | ax-mp | |- ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) C_ ( K u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) |
| 319 | 318 88 | sseqtrrid | |- ( ph -> ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) C_ U. ran ( (,) o. G ) ) |
| 320 | ovolsscl | |- ( ( ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) C_ U. ran ( (,) o. G ) /\ U. ran ( (,) o. G ) C_ RR /\ ( vol* ` U. ran ( (,) o. G ) ) e. RR ) -> ( vol* ` ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) e. RR ) |
|
| 321 | 319 20 95 320 | syl3anc | |- ( ph -> ( vol* ` ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) e. RR ) |
| 322 | 104 | ssdifd | |- ( ph -> ( E \ A ) C_ ( ( K u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) \ A ) ) |
| 323 | difundir | |- ( ( K u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) \ A ) = ( ( K \ A ) u. ( U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) \ A ) ) |
|
| 324 | difss | |- ( U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) \ A ) C_ U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) |
|
| 325 | unss2 | |- ( ( U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) \ A ) C_ U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) -> ( ( K \ A ) u. ( U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) \ A ) ) C_ ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) |
|
| 326 | 324 325 | ax-mp | |- ( ( K \ A ) u. ( U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) \ A ) ) C_ ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) |
| 327 | 323 326 | eqsstri | |- ( ( K u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) \ A ) C_ ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) |
| 328 | 322 327 | sstrdi | |- ( ph -> ( E \ A ) C_ ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) |
| 329 | 319 20 | sstrd | |- ( ph -> ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) C_ RR ) |
| 330 | ovolss | |- ( ( ( E \ A ) C_ ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) /\ ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) C_ RR ) -> ( vol* ` ( E \ A ) ) <_ ( vol* ` ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) ) |
|
| 331 | 328 329 330 | syl2anc | |- ( ph -> ( vol* ` ( E \ A ) ) <_ ( vol* ` ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) ) |
| 332 | 52 46 | sstrd | |- ( ph -> ( K \ A ) C_ RR ) |
| 333 | ovolun | |- ( ( ( ( K \ A ) C_ RR /\ ( vol* ` ( K \ A ) ) e. RR ) /\ ( U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) C_ RR /\ ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) e. RR ) ) -> ( vol* ` ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) <_ ( ( vol* ` ( K \ A ) ) + ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) ) |
|
| 334 | 332 54 116 97 333 | syl22anc | |- ( ph -> ( vol* ` ( ( K \ A ) u. U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) <_ ( ( vol* ` ( K \ A ) ) + ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) ) |
| 335 | 26 321 315 331 334 | letrd | |- ( ph -> ( vol* ` ( E \ A ) ) <_ ( ( vol* ` ( K \ A ) ) + ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) ) |
| 336 | 97 50 54 312 | ltadd2dd | |- ( ph -> ( ( vol* ` ( K \ A ) ) + ( vol* ` U. ( ( (,) o. G ) " ( ZZ>= ` ( M + 1 ) ) ) ) ) < ( ( vol* ` ( K \ A ) ) + C ) ) |
| 337 | 26 315 55 335 336 | lelttrd | |- ( ph -> ( vol* ` ( E \ A ) ) < ( ( vol* ` ( K \ A ) ) + C ) ) |
| 338 | 23 26 51 55 314 337 | lt2addd | |- ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) < ( ( ( vol* ` ( K i^i A ) ) + C ) + ( ( vol* ` ( K \ A ) ) + C ) ) ) |
| 339 | 49 | recnd | |- ( ph -> ( vol* ` ( K i^i A ) ) e. CC ) |
| 340 | 50 | recnd | |- ( ph -> C e. CC ) |
| 341 | 54 | recnd | |- ( ph -> ( vol* ` ( K \ A ) ) e. CC ) |
| 342 | 339 340 341 340 | add4d | |- ( ph -> ( ( ( vol* ` ( K i^i A ) ) + C ) + ( ( vol* ` ( K \ A ) ) + C ) ) = ( ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) + ( C + C ) ) ) |
| 343 | 338 342 | breqtrd | |- ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) < ( ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) + ( C + C ) ) ) |