This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | ||
| uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| uniioombl.a | ⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) | ||
| uniioombl.e | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | ||
| uniioombl.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| uniioombl.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | ||
| uniioombl.s | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | ||
| uniioombl.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | ||
| uniioombl.v | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | ||
| uniioombl.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| uniioombl.m2 | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑇 ‘ 𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) | ||
| uniioombl.k | ⊢ 𝐾 = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) | ||
| Assertion | uniioombllem3 | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) < ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 2 | uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 3 | uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 4 | uniioombl.a | ⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) | |
| 5 | uniioombl.e | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | |
| 6 | uniioombl.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 7 | uniioombl.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 8 | uniioombl.s | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | |
| 9 | uniioombl.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | |
| 10 | uniioombl.v | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | |
| 11 | uniioombl.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 12 | uniioombl.m2 | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑇 ‘ 𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) | |
| 13 | uniioombl.k | ⊢ 𝐾 = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) | |
| 14 | inss1 | ⊢ ( 𝐸 ∩ 𝐴 ) ⊆ 𝐸 | |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ( 𝐸 ∩ 𝐴 ) ⊆ 𝐸 ) |
| 16 | 7 | uniiccdif | ⊢ ( 𝜑 → ( ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ∧ ( vol* ‘ ( ∪ ran ( [,] ∘ 𝐺 ) ∖ ∪ ran ( (,) ∘ 𝐺 ) ) ) = 0 ) ) |
| 17 | 16 | simpld | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) |
| 18 | ovolficcss | ⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐺 ) ⊆ ℝ ) | |
| 19 | 7 18 | syl | ⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐺 ) ⊆ ℝ ) |
| 20 | 17 19 | sstrd | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ) |
| 21 | 8 20 | sstrd | ⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) |
| 22 | ovolsscl | ⊢ ( ( ( 𝐸 ∩ 𝐴 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ℝ ) | |
| 23 | 15 21 5 22 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ℝ ) |
| 24 | difssd | ⊢ ( 𝜑 → ( 𝐸 ∖ 𝐴 ) ⊆ 𝐸 ) | |
| 25 | ovolsscl | ⊢ ( ( ( 𝐸 ∖ 𝐴 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ∈ ℝ ) | |
| 26 | 24 21 5 25 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ∈ ℝ ) |
| 27 | inss1 | ⊢ ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 | |
| 28 | 27 | a1i | ⊢ ( 𝜑 → ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 ) |
| 29 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | uniioombllem3a | ⊢ ( 𝜑 → ( 𝐾 = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) ) |
| 30 | 29 | simpld | ⊢ ( 𝜑 → 𝐾 = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 31 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 32 | elfznn | ⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ℕ ) | |
| 33 | ffvelcdm | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 34 | 7 32 33 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 35 | 31 34 | sselid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) ) |
| 36 | 1st2nd2 | ⊢ ( ( 𝐺 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) → ( 𝐺 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) |
| 38 | 37 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) ) |
| 39 | df-ov | ⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) | |
| 40 | 38 39 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 41 | ioossre | ⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ | |
| 42 | 40 41 | eqsstrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 43 | 42 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 44 | iunss | ⊢ ( ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ↔ ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) | |
| 45 | 43 44 | sylibr | ⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 46 | 30 45 | eqsstrd | ⊢ ( 𝜑 → 𝐾 ⊆ ℝ ) |
| 47 | 29 | simprd | ⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) ∈ ℝ ) |
| 48 | ovolsscl | ⊢ ( ( ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℝ ) | |
| 49 | 28 46 47 48 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℝ ) |
| 50 | 6 | rpred | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 51 | 49 50 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + 𝐶 ) ∈ ℝ ) |
| 52 | difssd | ⊢ ( 𝜑 → ( 𝐾 ∖ 𝐴 ) ⊆ 𝐾 ) | |
| 53 | ovolsscl | ⊢ ( ( ( 𝐾 ∖ 𝐴 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ∈ ℝ ) | |
| 54 | 52 46 47 53 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ∈ ℝ ) |
| 55 | 54 50 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + 𝐶 ) ∈ ℝ ) |
| 56 | ssun2 | ⊢ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) | |
| 57 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 58 | rexpssxrxp | ⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) | |
| 59 | 31 58 | sstri | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 60 | fss | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) | |
| 61 | 7 59 60 | sylancl | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 62 | fco | ⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ ) | |
| 63 | 57 61 62 | sylancr | ⊢ ( 𝜑 → ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ ) |
| 64 | 63 | ffnd | ⊢ ( 𝜑 → ( (,) ∘ 𝐺 ) Fn ℕ ) |
| 65 | fnima | ⊢ ( ( (,) ∘ 𝐺 ) Fn ℕ → ( ( (,) ∘ 𝐺 ) “ ℕ ) = ran ( (,) ∘ 𝐺 ) ) | |
| 66 | 64 65 | syl | ⊢ ( 𝜑 → ( ( (,) ∘ 𝐺 ) “ ℕ ) = ran ( (,) ∘ 𝐺 ) ) |
| 67 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 68 | 11 | peano2nnd | ⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ ) |
| 69 | 68 67 | eleqtrdi | ⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 70 | uzsplit | ⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( ℤ≥ ‘ 1 ) = ( ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) | |
| 71 | 69 70 | syl | ⊢ ( 𝜑 → ( ℤ≥ ‘ 1 ) = ( ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 72 | 67 71 | eqtrid | ⊢ ( 𝜑 → ℕ = ( ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 73 | 11 | nncnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 74 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 75 | pncan | ⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) | |
| 76 | 73 74 75 | sylancl | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 77 | 76 | oveq2d | ⊢ ( 𝜑 → ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) = ( 1 ... 𝑀 ) ) |
| 78 | 77 | uneq1d | ⊢ ( 𝜑 → ( ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = ( ( 1 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 79 | 72 78 | eqtrd | ⊢ ( 𝜑 → ℕ = ( ( 1 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 80 | 79 | imaeq2d | ⊢ ( 𝜑 → ( ( (,) ∘ 𝐺 ) “ ℕ ) = ( ( (,) ∘ 𝐺 ) “ ( ( 1 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 81 | 66 80 | eqtr3d | ⊢ ( 𝜑 → ran ( (,) ∘ 𝐺 ) = ( ( (,) ∘ 𝐺 ) “ ( ( 1 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 82 | imaundi | ⊢ ( ( (,) ∘ 𝐺 ) “ ( ( 1 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) = ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) | |
| 83 | 81 82 | eqtrdi | ⊢ ( 𝜑 → ran ( (,) ∘ 𝐺 ) = ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 84 | 83 | unieqd | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) = ∪ ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 85 | uniun | ⊢ ∪ ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) = ( ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) | |
| 86 | 84 85 | eqtrdi | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) = ( ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 87 | 13 | uneq1i | ⊢ ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) = ( ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 88 | 86 87 | eqtr4di | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) = ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 89 | 56 88 | sseqtrrid | ⊢ ( 𝜑 → ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
| 90 | 1 2 3 4 5 6 7 8 9 10 | uniioombllem1 | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 91 | ssid | ⊢ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) | |
| 92 | 9 | ovollb | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 93 | 7 91 92 | sylancl | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 94 | ovollecl | ⊢ ( ( ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) | |
| 95 | 20 90 93 94 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) |
| 96 | ovolsscl | ⊢ ( ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) → ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ ) | |
| 97 | 89 20 95 96 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ ) |
| 98 | 49 97 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ ) |
| 99 | unss1 | ⊢ ( ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 → ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) | |
| 100 | 27 99 | ax-mp | ⊢ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 101 | 100 88 | sseqtrrid | ⊢ ( 𝜑 → ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
| 102 | ovolsscl | ⊢ ( ( ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ ) | |
| 103 | 101 20 95 102 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ ) |
| 104 | 8 88 | sseqtrd | ⊢ ( 𝜑 → 𝐸 ⊆ ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 105 | 104 | ssrind | ⊢ ( 𝜑 → ( 𝐸 ∩ 𝐴 ) ⊆ ( ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∩ 𝐴 ) ) |
| 106 | indir | ⊢ ( ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∩ 𝐴 ) = ( ( 𝐾 ∩ 𝐴 ) ∪ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) ) | |
| 107 | inss1 | ⊢ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) ⊆ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | |
| 108 | unss2 | ⊢ ( ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) ⊆ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐾 ∩ 𝐴 ) ∪ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) ) ⊆ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) | |
| 109 | 107 108 | ax-mp | ⊢ ( ( 𝐾 ∩ 𝐴 ) ∪ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) ) ⊆ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 110 | 106 109 | eqsstri | ⊢ ( ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∩ 𝐴 ) ⊆ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 111 | 105 110 | sstrdi | ⊢ ( 𝜑 → ( 𝐸 ∩ 𝐴 ) ⊆ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 112 | 101 20 | sstrd | ⊢ ( 𝜑 → ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ℝ ) |
| 113 | ovolss | ⊢ ( ( ( 𝐸 ∩ 𝐴 ) ⊆ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) ≤ ( vol* ‘ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) | |
| 114 | 111 112 113 | syl2anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) ≤ ( vol* ‘ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 115 | 28 46 | sstrd | ⊢ ( 𝜑 → ( 𝐾 ∩ 𝐴 ) ⊆ ℝ ) |
| 116 | 89 20 | sstrd | ⊢ ( 𝜑 → ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ℝ ) |
| 117 | ovolun | ⊢ ( ( ( ( 𝐾 ∩ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℝ ) ∧ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ℝ ∧ ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) | |
| 118 | 115 49 116 97 117 | syl22anc | ⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐾 ∩ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 119 | 23 103 98 114 118 | letrd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 120 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 121 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 ) | |
| 122 | 121 9 | ovolsf | ⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 123 | 7 122 | syl | ⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 124 | 123 11 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑇 ‘ 𝑀 ) ∈ ( 0 [,) +∞ ) ) |
| 125 | 120 124 | sselid | ⊢ ( 𝜑 → ( 𝑇 ‘ 𝑀 ) ∈ ℝ ) |
| 126 | 90 125 | resubcld | ⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ∈ ℝ ) |
| 127 | 97 | rexrd | ⊢ ( 𝜑 → ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ* ) |
| 128 | id | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℕ ) | |
| 129 | nnaddcl | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝑧 + 𝑀 ) ∈ ℕ ) | |
| 130 | 128 11 129 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) → ( 𝑧 + 𝑀 ) ∈ ℕ ) |
| 131 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ ( 𝑧 + 𝑀 ) ∈ ℕ ) → ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 132 | 130 131 | syldan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 133 | 132 | fmpttd | ⊢ ( 𝜑 → ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 134 | eqid | ⊢ ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) = ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) | |
| 135 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) | |
| 136 | 134 135 | ovolsf | ⊢ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 137 | 133 136 | syl | ⊢ ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 138 | 137 | frnd | ⊢ ( 𝜑 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ⊆ ( 0 [,) +∞ ) ) |
| 139 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 140 | 138 139 | sstrdi | ⊢ ( 𝜑 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ⊆ ℝ* ) |
| 141 | supxrcl | ⊢ ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ∈ ℝ* ) | |
| 142 | 140 141 | syl | ⊢ ( 𝜑 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 143 | 126 | rexrd | ⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ∈ ℝ* ) |
| 144 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 1 ∈ ℤ ) | |
| 145 | 11 | nnzd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 146 | 145 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 147 | addcom | ⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑀 + 1 ) = ( 1 + 𝑀 ) ) | |
| 148 | 73 74 147 | sylancl | ⊢ ( 𝜑 → ( 𝑀 + 1 ) = ( 1 + 𝑀 ) ) |
| 149 | 148 | fveq2d | ⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑀 + 1 ) ) = ( ℤ≥ ‘ ( 1 + 𝑀 ) ) ) |
| 150 | 149 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ↔ 𝑥 ∈ ( ℤ≥ ‘ ( 1 + 𝑀 ) ) ) ) |
| 151 | 150 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ( ℤ≥ ‘ ( 1 + 𝑀 ) ) ) |
| 152 | eluzsub | ⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 1 + 𝑀 ) ) ) → ( 𝑥 − 𝑀 ) ∈ ( ℤ≥ ‘ 1 ) ) | |
| 153 | 144 146 151 152 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑥 − 𝑀 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 154 | 153 67 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑥 − 𝑀 ) ∈ ℕ ) |
| 155 | eluzelz | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → 𝑥 ∈ ℤ ) | |
| 156 | 155 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ℤ ) |
| 157 | 156 | zcnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ℂ ) |
| 158 | 73 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 ∈ ℂ ) |
| 159 | 157 158 | npcand | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑥 − 𝑀 ) + 𝑀 ) = 𝑥 ) |
| 160 | 159 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 = ( ( 𝑥 − 𝑀 ) + 𝑀 ) ) |
| 161 | oveq1 | ⊢ ( 𝑧 = ( 𝑥 − 𝑀 ) → ( 𝑧 + 𝑀 ) = ( ( 𝑥 − 𝑀 ) + 𝑀 ) ) | |
| 162 | 161 | rspceeqv | ⊢ ( ( ( 𝑥 − 𝑀 ) ∈ ℕ ∧ 𝑥 = ( ( 𝑥 − 𝑀 ) + 𝑀 ) ) → ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑧 + 𝑀 ) ) |
| 163 | 154 160 162 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑧 + 𝑀 ) ) |
| 164 | eqid | ⊢ ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) = ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) | |
| 165 | 164 | elrnmpt | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ↔ ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑧 + 𝑀 ) ) ) |
| 166 | 165 | elv | ⊢ ( 𝑥 ∈ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ↔ ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑧 + 𝑀 ) ) |
| 167 | 163 166 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) |
| 168 | 167 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → 𝑥 ∈ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) ) |
| 169 | 168 | ssrdv | ⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) |
| 170 | imass2 | ⊢ ( ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) → ( 𝐺 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ( 𝐺 “ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) ) | |
| 171 | 169 170 | syl | ⊢ ( 𝜑 → ( 𝐺 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ( 𝐺 “ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) ) |
| 172 | rnco2 | ⊢ ran ( 𝐺 ∘ ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) = ( 𝐺 “ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) | |
| 173 | 7 130 | cofmpt | ⊢ ( 𝜑 → ( 𝐺 ∘ ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) = ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) |
| 174 | 173 | rneqd | ⊢ ( 𝜑 → ran ( 𝐺 ∘ ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) = ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) |
| 175 | 172 174 | eqtr3id | ⊢ ( 𝜑 → ( 𝐺 “ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) = ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) |
| 176 | 171 175 | sseqtrd | ⊢ ( 𝜑 → ( 𝐺 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) |
| 177 | imass2 | ⊢ ( ( 𝐺 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) → ( (,) “ ( 𝐺 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( (,) “ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) | |
| 178 | 176 177 | syl | ⊢ ( 𝜑 → ( (,) “ ( 𝐺 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( (,) “ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) |
| 179 | imaco | ⊢ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = ( (,) “ ( 𝐺 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) | |
| 180 | rnco2 | ⊢ ran ( (,) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) = ( (,) “ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) | |
| 181 | 178 179 180 | 3sstr4g | ⊢ ( 𝜑 → ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ran ( (,) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) |
| 182 | 181 | unissd | ⊢ ( 𝜑 → ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ∪ ran ( (,) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) |
| 183 | 135 | ovollb | ⊢ ( ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ∪ ran ( (,) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) → ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ) |
| 184 | 133 182 183 | syl2anc | ⊢ ( 𝜑 → ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ) |
| 185 | 123 | frnd | ⊢ ( 𝜑 → ran 𝑇 ⊆ ( 0 [,) +∞ ) ) |
| 186 | 185 139 | sstrdi | ⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ* ) |
| 187 | 9 | fveq1i | ⊢ ( 𝑇 ‘ ( 𝑀 + 𝑛 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑀 + 𝑛 ) ) |
| 188 | 11 | nnred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 189 | 188 | ltp1d | ⊢ ( 𝜑 → 𝑀 < ( 𝑀 + 1 ) ) |
| 190 | fzdisj | ⊢ ( 𝑀 < ( 𝑀 + 1 ) → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) = ∅ ) | |
| 191 | 189 190 | syl | ⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) = ∅ ) |
| 192 | 191 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) = ∅ ) |
| 193 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 194 | nn0addge1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ≤ ( 𝑀 + 𝑛 ) ) | |
| 195 | 188 193 194 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ≤ ( 𝑀 + 𝑛 ) ) |
| 196 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
| 197 | 196 67 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 198 | nnaddcl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑀 + 𝑛 ) ∈ ℕ ) | |
| 199 | 11 198 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 + 𝑛 ) ∈ ℕ ) |
| 200 | 199 | nnzd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 + 𝑛 ) ∈ ℤ ) |
| 201 | elfz5 | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑀 + 𝑛 ) ∈ ℤ ) → ( 𝑀 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ↔ 𝑀 ≤ ( 𝑀 + 𝑛 ) ) ) | |
| 202 | 197 200 201 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ↔ 𝑀 ≤ ( 𝑀 + 𝑛 ) ) ) |
| 203 | 195 202 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) |
| 204 | fzsplit | ⊢ ( 𝑀 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) → ( 1 ... ( 𝑀 + 𝑛 ) ) = ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) ) | |
| 205 | 203 204 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... ( 𝑀 + 𝑛 ) ) = ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) ) |
| 206 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... ( 𝑀 + 𝑛 ) ) ∈ Fin ) | |
| 207 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 208 | elfznn | ⊢ ( 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) → 𝑗 ∈ ℕ ) | |
| 209 | ovolfcl | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) | |
| 210 | 207 208 209 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 211 | 210 | simp2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 212 | 210 | simp1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 213 | 211 212 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 214 | 213 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 215 | 192 205 206 214 | fsumsplit | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) + Σ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 216 | 121 | ovolfsval | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑗 ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 217 | 207 208 216 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑗 ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 218 | 199 67 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 + 𝑛 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 219 | 217 218 214 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑀 + 𝑛 ) ) ) |
| 220 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 221 | 32 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑗 ∈ ℕ ) |
| 222 | 220 221 216 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑗 ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 223 | 7 32 209 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 224 | 223 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 225 | 223 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 226 | 224 225 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 227 | 226 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 228 | 227 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 229 | 222 197 228 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑀 ) ) |
| 230 | 9 | fveq1i | ⊢ ( 𝑇 ‘ 𝑀 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑀 ) |
| 231 | 229 230 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( 𝑇 ‘ 𝑀 ) ) |
| 232 | 196 | nnzd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 233 | 232 | peano2zd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 + 1 ) ∈ ℤ ) |
| 234 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 235 | 196 | peano2nnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 + 1 ) ∈ ℕ ) |
| 236 | elfzuz | ⊢ ( 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) → 𝑗 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | |
| 237 | eluznn | ⊢ ( ( ( 𝑀 + 1 ) ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑗 ∈ ℕ ) | |
| 238 | 235 236 237 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → 𝑗 ∈ ℕ ) |
| 239 | 234 238 209 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 240 | 239 | simp2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 241 | 239 | simp1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 242 | 240 241 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 243 | 242 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 244 | 2fveq3 | ⊢ ( 𝑗 = ( 𝑘 + 𝑀 ) → ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) = ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) | |
| 245 | 2fveq3 | ⊢ ( 𝑗 = ( 𝑘 + 𝑀 ) → ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) = ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) | |
| 246 | 244 245 | oveq12d | ⊢ ( 𝑗 = ( 𝑘 + 𝑀 ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ) |
| 247 | 232 233 200 243 246 | fsumshftm | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) = Σ 𝑘 ∈ ( ( ( 𝑀 + 1 ) − 𝑀 ) ... ( ( 𝑀 + 𝑛 ) − 𝑀 ) ) ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ) |
| 248 | 196 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
| 249 | pncan2 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) − 𝑀 ) = 1 ) | |
| 250 | 248 74 249 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 + 1 ) − 𝑀 ) = 1 ) |
| 251 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 252 | 251 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 253 | 248 252 | pncan2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 + 𝑛 ) − 𝑀 ) = 𝑛 ) |
| 254 | 250 253 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑀 + 1 ) − 𝑀 ) ... ( ( 𝑀 + 𝑛 ) − 𝑀 ) ) = ( 1 ... 𝑛 ) ) |
| 255 | 254 | sumeq1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( ( ( 𝑀 + 1 ) − 𝑀 ) ... ( ( 𝑀 + 𝑛 ) − 𝑀 ) ) ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ) |
| 256 | 133 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 257 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) → 𝑘 ∈ ℕ ) | |
| 258 | 134 | ovolfsval | ⊢ ( ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ‘ 𝑘 ) = ( ( 2nd ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) − ( 1st ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) ) ) |
| 259 | 256 257 258 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ‘ 𝑘 ) = ( ( 2nd ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) − ( 1st ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) ) ) |
| 260 | 257 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 261 | fvoveq1 | ⊢ ( 𝑧 = 𝑘 → ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) = ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) | |
| 262 | eqid | ⊢ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) = ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) | |
| 263 | fvex | ⊢ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ∈ V | |
| 264 | 261 262 263 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) |
| 265 | 260 264 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) |
| 266 | 265 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 2nd ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) = ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) |
| 267 | 265 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 1st ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) = ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) |
| 268 | 266 267 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 2nd ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) − ( 1st ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ) |
| 269 | 259 268 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ‘ 𝑘 ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ) |
| 270 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) | |
| 271 | 270 67 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 272 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 273 | nnaddcl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝑘 + 𝑀 ) ∈ ℕ ) | |
| 274 | 257 196 273 | syl2anr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 + 𝑀 ) ∈ ℕ ) |
| 275 | ovolfcl | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝑘 + 𝑀 ) ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ) | |
| 276 | 272 274 275 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ) |
| 277 | 276 | simp2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ) |
| 278 | 276 | simp1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ) |
| 279 | 277 278 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ∈ ℝ ) |
| 280 | 279 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ∈ ℂ ) |
| 281 | 269 271 280 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) |
| 282 | 247 255 281 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) |
| 283 | 231 282 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) + Σ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ) |
| 284 | 215 219 283 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑀 + 𝑛 ) ) = ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ) |
| 285 | 187 284 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑀 + 𝑛 ) ) = ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ) |
| 286 | 123 | ffnd | ⊢ ( 𝜑 → 𝑇 Fn ℕ ) |
| 287 | fnfvelrn | ⊢ ( ( 𝑇 Fn ℕ ∧ ( 𝑀 + 𝑛 ) ∈ ℕ ) → ( 𝑇 ‘ ( 𝑀 + 𝑛 ) ) ∈ ran 𝑇 ) | |
| 288 | 286 199 287 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑀 + 𝑛 ) ) ∈ ran 𝑇 ) |
| 289 | 285 288 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ∈ ran 𝑇 ) |
| 290 | supxrub | ⊢ ( ( ran 𝑇 ⊆ ℝ* ∧ ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ∈ ran 𝑇 ) → ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) | |
| 291 | 186 289 290 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 292 | 125 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ‘ 𝑀 ) ∈ ℝ ) |
| 293 | 137 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ) |
| 294 | 120 293 | sselid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 295 | 90 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 296 | 292 294 295 | leaddsub2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑇 ‘ 𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ↔ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) ) |
| 297 | 291 296 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) |
| 298 | 297 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) |
| 299 | 137 | ffnd | ⊢ ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) Fn ℕ ) |
| 300 | breq1 | ⊢ ( 𝑥 = ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) → ( 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ↔ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) ) | |
| 301 | 300 | ralrn | ⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) Fn ℕ → ( ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ↔ ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) ) |
| 302 | 299 301 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ↔ ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) ) |
| 303 | 298 302 | mpbird | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) |
| 304 | supxrleub | ⊢ ( ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ⊆ ℝ* ∧ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ∈ ℝ* ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ↔ ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) ) | |
| 305 | 140 143 304 | syl2anc | ⊢ ( 𝜑 → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ↔ ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) ) |
| 306 | 303 305 | mpbird | ⊢ ( 𝜑 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) |
| 307 | 127 142 143 184 306 | xrletrd | ⊢ ( 𝜑 → ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) ) |
| 308 | 125 90 50 | absdifltd | ⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝑇 ‘ 𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ↔ ( ( sup ( ran 𝑇 , ℝ* , < ) − 𝐶 ) < ( 𝑇 ‘ 𝑀 ) ∧ ( 𝑇 ‘ 𝑀 ) < ( sup ( ran 𝑇 , ℝ* , < ) + 𝐶 ) ) ) ) |
| 309 | 12 308 | mpbid | ⊢ ( 𝜑 → ( ( sup ( ran 𝑇 , ℝ* , < ) − 𝐶 ) < ( 𝑇 ‘ 𝑀 ) ∧ ( 𝑇 ‘ 𝑀 ) < ( sup ( ran 𝑇 , ℝ* , < ) + 𝐶 ) ) ) |
| 310 | 309 | simpld | ⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) − 𝐶 ) < ( 𝑇 ‘ 𝑀 ) ) |
| 311 | 90 50 125 310 | ltsub23d | ⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇 ‘ 𝑀 ) ) < 𝐶 ) |
| 312 | 97 126 50 307 311 | lelttrd | ⊢ ( 𝜑 → ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) < 𝐶 ) |
| 313 | 97 50 49 312 | ltadd2dd | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) < ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + 𝐶 ) ) |
| 314 | 23 98 51 119 313 | lelttrd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) < ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + 𝐶 ) ) |
| 315 | 54 97 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ ) |
| 316 | difss | ⊢ ( 𝐾 ∖ 𝐴 ) ⊆ 𝐾 | |
| 317 | unss1 | ⊢ ( ( 𝐾 ∖ 𝐴 ) ⊆ 𝐾 → ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) | |
| 318 | 316 317 | ax-mp | ⊢ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 319 | 318 88 | sseqtrrid | ⊢ ( 𝜑 → ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
| 320 | ovolsscl | ⊢ ( ( ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ ) | |
| 321 | 319 20 95 320 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ ) |
| 322 | 104 | ssdifd | ⊢ ( 𝜑 → ( 𝐸 ∖ 𝐴 ) ⊆ ( ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∖ 𝐴 ) ) |
| 323 | difundir | ⊢ ( ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∖ 𝐴 ) = ( ( 𝐾 ∖ 𝐴 ) ∪ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) ) | |
| 324 | difss | ⊢ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) ⊆ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | |
| 325 | unss2 | ⊢ ( ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) ⊆ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐾 ∖ 𝐴 ) ∪ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) ) ⊆ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) | |
| 326 | 324 325 | ax-mp | ⊢ ( ( 𝐾 ∖ 𝐴 ) ∪ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) ) ⊆ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 327 | 323 326 | eqsstri | ⊢ ( ( 𝐾 ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∖ 𝐴 ) ⊆ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 328 | 322 327 | sstrdi | ⊢ ( 𝜑 → ( 𝐸 ∖ 𝐴 ) ⊆ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 329 | 319 20 | sstrd | ⊢ ( 𝜑 → ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ℝ ) |
| 330 | ovolss | ⊢ ( ( ( 𝐸 ∖ 𝐴 ) ⊆ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ≤ ( vol* ‘ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) | |
| 331 | 328 329 330 | syl2anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ≤ ( vol* ‘ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 332 | 52 46 | sstrd | ⊢ ( 𝜑 → ( 𝐾 ∖ 𝐴 ) ⊆ ℝ ) |
| 333 | ovolun | ⊢ ( ( ( ( 𝐾 ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ∈ ℝ ) ∧ ( ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ⊆ ℝ ∧ ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) | |
| 334 | 332 54 116 97 333 | syl22anc | ⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐾 ∖ 𝐴 ) ∪ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 335 | 26 321 315 331 334 | letrd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ≤ ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 336 | 97 50 54 312 | ltadd2dd | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + ( vol* ‘ ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) < ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + 𝐶 ) ) |
| 337 | 26 315 55 335 336 | lelttrd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) < ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + 𝐶 ) ) |
| 338 | 23 26 51 55 314 337 | lt2addd | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) < ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + 𝐶 ) + ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + 𝐶 ) ) ) |
| 339 | 49 | recnd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℂ ) |
| 340 | 50 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 341 | 54 | recnd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ∈ ℂ ) |
| 342 | 339 340 341 340 | add4d | ⊢ ( 𝜑 → ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + 𝐶 ) + ( ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) + 𝐶 ) ) = ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ) |
| 343 | 338 342 | breqtrd | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) < ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ) |