This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by NM, 22-Feb-2006) (Revised by Mario Carneiro, 6-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrleub | |- ( ( A C_ RR* /\ B e. RR* ) -> ( sup ( A , RR* , < ) <_ B <-> A. x e. A x <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supxrlub | |- ( ( A C_ RR* /\ B e. RR* ) -> ( B < sup ( A , RR* , < ) <-> E. x e. A B < x ) ) |
|
| 2 | 1 | notbid | |- ( ( A C_ RR* /\ B e. RR* ) -> ( -. B < sup ( A , RR* , < ) <-> -. E. x e. A B < x ) ) |
| 3 | ralnex | |- ( A. x e. A -. B < x <-> -. E. x e. A B < x ) |
|
| 4 | 2 3 | bitr4di | |- ( ( A C_ RR* /\ B e. RR* ) -> ( -. B < sup ( A , RR* , < ) <-> A. x e. A -. B < x ) ) |
| 5 | supxrcl | |- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
|
| 6 | xrlenlt | |- ( ( sup ( A , RR* , < ) e. RR* /\ B e. RR* ) -> ( sup ( A , RR* , < ) <_ B <-> -. B < sup ( A , RR* , < ) ) ) |
|
| 7 | 5 6 | sylan | |- ( ( A C_ RR* /\ B e. RR* ) -> ( sup ( A , RR* , < ) <_ B <-> -. B < sup ( A , RR* , < ) ) ) |
| 8 | simpl | |- ( ( A C_ RR* /\ B e. RR* ) -> A C_ RR* ) |
|
| 9 | 8 | sselda | |- ( ( ( A C_ RR* /\ B e. RR* ) /\ x e. A ) -> x e. RR* ) |
| 10 | simplr | |- ( ( ( A C_ RR* /\ B e. RR* ) /\ x e. A ) -> B e. RR* ) |
|
| 11 | 9 10 | xrlenltd | |- ( ( ( A C_ RR* /\ B e. RR* ) /\ x e. A ) -> ( x <_ B <-> -. B < x ) ) |
| 12 | 11 | ralbidva | |- ( ( A C_ RR* /\ B e. RR* ) -> ( A. x e. A x <_ B <-> A. x e. A -. B < x ) ) |
| 13 | 4 7 12 | 3bitr4d | |- ( ( A C_ RR* /\ B e. RR* ) -> ( sup ( A , RR* , < ) <_ B <-> A. x e. A x <_ B ) ) |