This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 8-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
||
| uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| uniioombl.a | |- A = U. ran ( (,) o. F ) |
||
| uniioombl.e | |- ( ph -> ( vol* ` E ) e. RR ) |
||
| uniioombl.c | |- ( ph -> C e. RR+ ) |
||
| uniioombl.g | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| uniioombl.s | |- ( ph -> E C_ U. ran ( (,) o. G ) ) |
||
| uniioombl.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
||
| uniioombl.v | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
||
| uniioombl.m | |- ( ph -> M e. NN ) |
||
| uniioombl.m2 | |- ( ph -> ( abs ` ( ( T ` M ) - sup ( ran T , RR* , < ) ) ) < C ) |
||
| uniioombl.k | |- K = U. ( ( (,) o. G ) " ( 1 ... M ) ) |
||
| Assertion | uniioombllem3a | |- ( ph -> ( K = U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) /\ ( vol* ` K ) e. RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 2 | uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
|
| 3 | uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 4 | uniioombl.a | |- A = U. ran ( (,) o. F ) |
|
| 5 | uniioombl.e | |- ( ph -> ( vol* ` E ) e. RR ) |
|
| 6 | uniioombl.c | |- ( ph -> C e. RR+ ) |
|
| 7 | uniioombl.g | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 8 | uniioombl.s | |- ( ph -> E C_ U. ran ( (,) o. G ) ) |
|
| 9 | uniioombl.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
|
| 10 | uniioombl.v | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
|
| 11 | uniioombl.m | |- ( ph -> M e. NN ) |
|
| 12 | uniioombl.m2 | |- ( ph -> ( abs ` ( ( T ` M ) - sup ( ran T , RR* , < ) ) ) < C ) |
|
| 13 | uniioombl.k | |- K = U. ( ( (,) o. G ) " ( 1 ... M ) ) |
|
| 14 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 15 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 16 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 17 | 15 16 | sstri | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 18 | fss | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> G : NN --> ( RR* X. RR* ) ) |
|
| 19 | 7 17 18 | sylancl | |- ( ph -> G : NN --> ( RR* X. RR* ) ) |
| 20 | fco | |- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ G : NN --> ( RR* X. RR* ) ) -> ( (,) o. G ) : NN --> ~P RR ) |
|
| 21 | 14 19 20 | sylancr | |- ( ph -> ( (,) o. G ) : NN --> ~P RR ) |
| 22 | ffun | |- ( ( (,) o. G ) : NN --> ~P RR -> Fun ( (,) o. G ) ) |
|
| 23 | funiunfv | |- ( Fun ( (,) o. G ) -> U_ j e. ( 1 ... M ) ( ( (,) o. G ) ` j ) = U. ( ( (,) o. G ) " ( 1 ... M ) ) ) |
|
| 24 | 21 22 23 | 3syl | |- ( ph -> U_ j e. ( 1 ... M ) ( ( (,) o. G ) ` j ) = U. ( ( (,) o. G ) " ( 1 ... M ) ) ) |
| 25 | elfznn | |- ( j e. ( 1 ... M ) -> j e. NN ) |
|
| 26 | fvco3 | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( ( (,) o. G ) ` j ) = ( (,) ` ( G ` j ) ) ) |
|
| 27 | 7 25 26 | syl2an | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) o. G ) ` j ) = ( (,) ` ( G ` j ) ) ) |
| 28 | 27 | iuneq2dv | |- ( ph -> U_ j e. ( 1 ... M ) ( ( (,) o. G ) ` j ) = U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) |
| 29 | 24 28 | eqtr3d | |- ( ph -> U. ( ( (,) o. G ) " ( 1 ... M ) ) = U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) |
| 30 | 13 29 | eqtrid | |- ( ph -> K = U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) |
| 31 | ffvelcdm | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( G ` j ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 32 | 7 25 31 | syl2an | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( G ` j ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 33 | 32 | elin2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( G ` j ) e. ( RR X. RR ) ) |
| 34 | 1st2nd2 | |- ( ( G ` j ) e. ( RR X. RR ) -> ( G ` j ) = <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
|
| 35 | 33 34 | syl | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( G ` j ) = <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
| 36 | 35 | fveq2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( (,) ` ( G ` j ) ) = ( (,) ` <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) ) |
| 37 | df-ov | |- ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) = ( (,) ` <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
|
| 38 | 36 37 | eqtr4di | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( (,) ` ( G ` j ) ) = ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) |
| 39 | ioossre | |- ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) C_ RR |
|
| 40 | 38 39 | eqsstrdi | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( (,) ` ( G ` j ) ) C_ RR ) |
| 41 | 40 | ralrimiva | |- ( ph -> A. j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) C_ RR ) |
| 42 | iunss | |- ( U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) C_ RR <-> A. j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) C_ RR ) |
|
| 43 | 41 42 | sylibr | |- ( ph -> U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) C_ RR ) |
| 44 | 30 43 | eqsstrd | |- ( ph -> K C_ RR ) |
| 45 | fzfid | |- ( ph -> ( 1 ... M ) e. Fin ) |
|
| 46 | 38 | fveq2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) = ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) ) |
| 47 | ovolfcl | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) |
|
| 48 | 7 25 47 | syl2an | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) |
| 49 | ovolioo | |- ( ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) -> ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
|
| 50 | 48 49 | syl | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
| 51 | 46 50 | eqtrd | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
| 52 | 48 | simp2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( 2nd ` ( G ` j ) ) e. RR ) |
| 53 | 48 | simp1d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( 1st ` ( G ` j ) ) e. RR ) |
| 54 | 52 53 | resubcld | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) e. RR ) |
| 55 | 51 54 | eqeltrd | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) |
| 56 | 45 55 | fsumrecl | |- ( ph -> sum_ j e. ( 1 ... M ) ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) |
| 57 | 30 | fveq2d | |- ( ph -> ( vol* ` K ) = ( vol* ` U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) ) |
| 58 | 40 55 | jca | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) ` ( G ` j ) ) C_ RR /\ ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) ) |
| 59 | 58 | ralrimiva | |- ( ph -> A. j e. ( 1 ... M ) ( ( (,) ` ( G ` j ) ) C_ RR /\ ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) ) |
| 60 | ovolfiniun | |- ( ( ( 1 ... M ) e. Fin /\ A. j e. ( 1 ... M ) ( ( (,) ` ( G ` j ) ) C_ RR /\ ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) ) -> ( vol* ` U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) <_ sum_ j e. ( 1 ... M ) ( vol* ` ( (,) ` ( G ` j ) ) ) ) |
|
| 61 | 45 59 60 | syl2anc | |- ( ph -> ( vol* ` U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) <_ sum_ j e. ( 1 ... M ) ( vol* ` ( (,) ` ( G ` j ) ) ) ) |
| 62 | 57 61 | eqbrtrd | |- ( ph -> ( vol* ` K ) <_ sum_ j e. ( 1 ... M ) ( vol* ` ( (,) ` ( G ` j ) ) ) ) |
| 63 | ovollecl | |- ( ( K C_ RR /\ sum_ j e. ( 1 ... M ) ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR /\ ( vol* ` K ) <_ sum_ j e. ( 1 ... M ) ( vol* ` ( (,) ` ( G ` j ) ) ) ) -> ( vol* ` K ) e. RR ) |
|
| 64 | 44 56 62 63 | syl3anc | |- ( ph -> ( vol* ` K ) e. RR ) |
| 65 | 30 64 | jca | |- ( ph -> ( K = U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) /\ ( vol* ` K ) e. RR ) ) |