This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999) (Proof shortened by Andrew Salmon, 17-Sep-2011) (Proof shortened by AV, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fco | |- ( ( F : B --> C /\ G : A --> B ) -> ( F o. G ) : A --> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun | |- ( G : A --> B -> Fun G ) |
|
| 2 | fcof | |- ( ( F : B --> C /\ Fun G ) -> ( F o. G ) : ( `' G " B ) --> C ) |
|
| 3 | 1 2 | sylan2 | |- ( ( F : B --> C /\ G : A --> B ) -> ( F o. G ) : ( `' G " B ) --> C ) |
| 4 | fimacnv | |- ( G : A --> B -> ( `' G " B ) = A ) |
|
| 5 | 4 | eqcomd | |- ( G : A --> B -> A = ( `' G " B ) ) |
| 6 | 5 | adantl | |- ( ( F : B --> C /\ G : A --> B ) -> A = ( `' G " B ) ) |
| 7 | 6 | feq2d | |- ( ( F : B --> C /\ G : A --> B ) -> ( ( F o. G ) : A --> C <-> ( F o. G ) : ( `' G " B ) --> C ) ) |
| 8 | 3 7 | mpbird | |- ( ( F : B --> C /\ G : A --> B ) -> ( F o. G ) : A --> C ) |