This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem uneq1d

Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998)

Ref Expression
Hypothesis uneq1d.1
|- ( ph -> A = B )
Assertion uneq1d
|- ( ph -> ( A u. C ) = ( B u. C ) )

Proof

Step Hyp Ref Expression
1 uneq1d.1
 |-  ( ph -> A = B )
2 uneq1
 |-  ( A = B -> ( A u. C ) = ( B u. C ) )
3 1 2 syl
 |-  ( ph -> ( A u. C ) = ( B u. C ) )