This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The outer volume is a lower bound on the sum of all interval coverings of A . (Contributed by Mario Carneiro, 15-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovollb.1 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| Assertion | ovollb | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovollb.1 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 2 | simpr | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> A C_ U. ran ( (,) o. F ) ) |
|
| 3 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 4 | simpl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 5 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 6 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 7 | 5 6 | sstri | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 8 | fss | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) |
|
| 9 | 4 7 8 | sylancl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> F : NN --> ( RR* X. RR* ) ) |
| 10 | fco | |- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
|
| 11 | 3 9 10 | sylancr | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
| 12 | 11 | frnd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> ran ( (,) o. F ) C_ ~P RR ) |
| 13 | sspwuni | |- ( ran ( (,) o. F ) C_ ~P RR <-> U. ran ( (,) o. F ) C_ RR ) |
|
| 14 | 12 13 | sylib | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> U. ran ( (,) o. F ) C_ RR ) |
| 15 | 2 14 | sstrd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> A C_ RR ) |
| 16 | eqid | |- { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
|
| 17 | 16 | ovolval | |- ( A C_ RR -> ( vol* ` A ) = inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |
| 18 | 15 17 | syl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> ( vol* ` A ) = inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |
| 19 | ssrab2 | |- { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } C_ RR* |
|
| 20 | 16 1 | elovolmr | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> sup ( ran S , RR* , < ) e. { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } ) |
| 21 | infxrlb | |- ( ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } C_ RR* /\ sup ( ran S , RR* , < ) e. { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } ) -> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) <_ sup ( ran S , RR* , < ) ) |
|
| 22 | 19 20 21 | sylancr | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) <_ sup ( ran S , RR* , < ) ) |
| 23 | 18 22 | eqbrtrd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. F ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |