This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure for the partial sums of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolfs.1 | |- G = ( ( abs o. - ) o. F ) |
|
| ovolfs.2 | |- S = seq 1 ( + , G ) |
||
| Assertion | ovolsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolfs.1 | |- G = ( ( abs o. - ) o. F ) |
|
| 2 | ovolfs.2 | |- S = seq 1 ( + , G ) |
|
| 3 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 4 | 1zzd | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> 1 e. ZZ ) |
|
| 5 | 1 | ovolfsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> G : NN --> ( 0 [,) +oo ) ) |
| 6 | 5 | ffvelcdmda | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( G ` x ) e. ( 0 [,) +oo ) ) |
| 7 | ge0addcl | |- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x + y ) e. ( 0 [,) +oo ) ) |
|
| 8 | 7 | adantl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x + y ) e. ( 0 [,) +oo ) ) |
| 9 | 3 4 6 8 | seqf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> seq 1 ( + , G ) : NN --> ( 0 [,) +oo ) ) |
| 10 | 2 | feq1i | |- ( S : NN --> ( 0 [,) +oo ) <-> seq 1 ( + , G ) : NN --> ( 0 [,) +oo ) ) |
| 11 | 9 10 | sylibr | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |