This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
||
| uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| uniioombl.a | |- A = U. ran ( (,) o. F ) |
||
| uniioombl.e | |- ( ph -> ( vol* ` E ) e. RR ) |
||
| uniioombl.c | |- ( ph -> C e. RR+ ) |
||
| uniioombl.g | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| uniioombl.s | |- ( ph -> E C_ U. ran ( (,) o. G ) ) |
||
| uniioombl.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
||
| uniioombl.v | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
||
| Assertion | uniioombllem1 | |- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 2 | uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
|
| 3 | uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 4 | uniioombl.a | |- A = U. ran ( (,) o. F ) |
|
| 5 | uniioombl.e | |- ( ph -> ( vol* ` E ) e. RR ) |
|
| 6 | uniioombl.c | |- ( ph -> C e. RR+ ) |
|
| 7 | uniioombl.g | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 8 | uniioombl.s | |- ( ph -> E C_ U. ran ( (,) o. G ) ) |
|
| 9 | uniioombl.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
|
| 10 | uniioombl.v | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
|
| 11 | eqid | |- ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) |
|
| 12 | 11 9 | ovolsf | |- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> T : NN --> ( 0 [,) +oo ) ) |
| 13 | 7 12 | syl | |- ( ph -> T : NN --> ( 0 [,) +oo ) ) |
| 14 | 13 | frnd | |- ( ph -> ran T C_ ( 0 [,) +oo ) ) |
| 15 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 16 | 14 15 | sstrdi | |- ( ph -> ran T C_ RR ) |
| 17 | 1nn | |- 1 e. NN |
|
| 18 | 13 | fdmd | |- ( ph -> dom T = NN ) |
| 19 | 17 18 | eleqtrrid | |- ( ph -> 1 e. dom T ) |
| 20 | 19 | ne0d | |- ( ph -> dom T =/= (/) ) |
| 21 | dm0rn0 | |- ( dom T = (/) <-> ran T = (/) ) |
|
| 22 | 21 | necon3bii | |- ( dom T =/= (/) <-> ran T =/= (/) ) |
| 23 | 20 22 | sylib | |- ( ph -> ran T =/= (/) ) |
| 24 | icossxr | |- ( 0 [,) +oo ) C_ RR* |
|
| 25 | 14 24 | sstrdi | |- ( ph -> ran T C_ RR* ) |
| 26 | supxrcl | |- ( ran T C_ RR* -> sup ( ran T , RR* , < ) e. RR* ) |
|
| 27 | 25 26 | syl | |- ( ph -> sup ( ran T , RR* , < ) e. RR* ) |
| 28 | 6 | rpred | |- ( ph -> C e. RR ) |
| 29 | 5 28 | readdcld | |- ( ph -> ( ( vol* ` E ) + C ) e. RR ) |
| 30 | 29 | rexrd | |- ( ph -> ( ( vol* ` E ) + C ) e. RR* ) |
| 31 | pnfxr | |- +oo e. RR* |
|
| 32 | 31 | a1i | |- ( ph -> +oo e. RR* ) |
| 33 | 29 | ltpnfd | |- ( ph -> ( ( vol* ` E ) + C ) < +oo ) |
| 34 | 27 30 32 10 33 | xrlelttrd | |- ( ph -> sup ( ran T , RR* , < ) < +oo ) |
| 35 | supxrbnd | |- ( ( ran T C_ RR /\ ran T =/= (/) /\ sup ( ran T , RR* , < ) < +oo ) -> sup ( ran T , RR* , < ) e. RR ) |
|
| 36 | 16 23 34 35 | syl3anc | |- ( ph -> sup ( ran T , RR* , < ) e. RR ) |