This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an outer volume is bounded above, then it is real. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovollecl | |- ( ( A C_ RR /\ B e. RR /\ ( vol* ` A ) <_ B ) -> ( vol* ` A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolcl | |- ( A C_ RR -> ( vol* ` A ) e. RR* ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A C_ RR /\ B e. RR /\ ( vol* ` A ) <_ B ) -> ( vol* ` A ) e. RR* ) |
| 3 | simp2 | |- ( ( A C_ RR /\ B e. RR /\ ( vol* ` A ) <_ B ) -> B e. RR ) |
|
| 4 | ovolge0 | |- ( A C_ RR -> 0 <_ ( vol* ` A ) ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( A C_ RR /\ B e. RR /\ ( vol* ` A ) <_ B ) -> 0 <_ ( vol* ` A ) ) |
| 6 | simp3 | |- ( ( A C_ RR /\ B e. RR /\ ( vol* ` A ) <_ B ) -> ( vol* ` A ) <_ B ) |
|
| 7 | xrrege0 | |- ( ( ( ( vol* ` A ) e. RR* /\ B e. RR ) /\ ( 0 <_ ( vol* ` A ) /\ ( vol* ` A ) <_ B ) ) -> ( vol* ` A ) e. RR ) |
|
| 8 | 2 3 5 6 7 | syl22anc | |- ( ( A C_ RR /\ B e. RR /\ ( vol* ` A ) <_ B ) -> ( vol* ` A ) e. RR ) |