This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 and fsump1i , which should make our notation clear and from which, along with closure fsumcl , we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 21-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumser.1 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) = A ) |
|
| fsumser.2 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| fsumser.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
||
| Assertion | fsumser | |- ( ph -> sum_ k e. ( M ... N ) A = ( seq M ( + , F ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumser.1 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) = A ) |
|
| 2 | fsumser.2 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 3 | fsumser.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
|
| 4 | eleq1w | |- ( m = k -> ( m e. ( M ... N ) <-> k e. ( M ... N ) ) ) |
|
| 5 | fveq2 | |- ( m = k -> ( F ` m ) = ( F ` k ) ) |
|
| 6 | 4 5 | ifbieq1d | |- ( m = k -> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) = if ( k e. ( M ... N ) , ( F ` k ) , 0 ) ) |
| 7 | eqid | |- ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) = ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) |
|
| 8 | fvex | |- ( F ` k ) e. _V |
|
| 9 | c0ex | |- 0 e. _V |
|
| 10 | 8 9 | ifex | |- if ( k e. ( M ... N ) , ( F ` k ) , 0 ) e. _V |
| 11 | 6 7 10 | fvmpt | |- ( k e. ( ZZ>= ` M ) -> ( ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) ` k ) = if ( k e. ( M ... N ) , ( F ` k ) , 0 ) ) |
| 12 | 1 | ifeq1da | |- ( ph -> if ( k e. ( M ... N ) , ( F ` k ) , 0 ) = if ( k e. ( M ... N ) , A , 0 ) ) |
| 13 | 11 12 | sylan9eqr | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) ` k ) = if ( k e. ( M ... N ) , A , 0 ) ) |
| 14 | ssidd | |- ( ph -> ( M ... N ) C_ ( M ... N ) ) |
|
| 15 | 13 2 3 14 | fsumsers | |- ( ph -> sum_ k e. ( M ... N ) A = ( seq M ( + , ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) ) ` N ) ) |
| 16 | elfzuz | |- ( k e. ( M ... N ) -> k e. ( ZZ>= ` M ) ) |
|
| 17 | 16 11 | syl | |- ( k e. ( M ... N ) -> ( ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) ` k ) = if ( k e. ( M ... N ) , ( F ` k ) , 0 ) ) |
| 18 | iftrue | |- ( k e. ( M ... N ) -> if ( k e. ( M ... N ) , ( F ` k ) , 0 ) = ( F ` k ) ) |
|
| 19 | 17 18 | eqtrd | |- ( k e. ( M ... N ) -> ( ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) ` k ) = ( F ` k ) ) |
| 20 | 19 | adantl | |- ( ( ph /\ k e. ( M ... N ) ) -> ( ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) ` k ) = ( F ` k ) ) |
| 21 | 2 20 | seqfveq | |- ( ph -> ( seq M ( + , ( m e. ( ZZ>= ` M ) |-> if ( m e. ( M ... N ) , ( F ` m ) , 0 ) ) ) ` N ) = ( seq M ( + , F ) ` N ) ) |
| 22 | 15 21 | eqtrd | |- ( ph -> sum_ k e. ( M ... N ) A = ( seq M ( + , F ) ` N ) ) |