This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
||
| uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| uniioombl.a | |- A = U. ran ( (,) o. F ) |
||
| uniioombl.e | |- ( ph -> ( vol* ` E ) e. RR ) |
||
| uniioombl.c | |- ( ph -> C e. RR+ ) |
||
| uniioombl.g | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| uniioombl.s | |- ( ph -> E C_ U. ran ( (,) o. G ) ) |
||
| uniioombl.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
||
| uniioombl.v | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
||
| uniioombl.m | |- ( ph -> M e. NN ) |
||
| uniioombl.m2 | |- ( ph -> ( abs ` ( ( T ` M ) - sup ( ran T , RR* , < ) ) ) < C ) |
||
| uniioombl.k | |- K = U. ( ( (,) o. G ) " ( 1 ... M ) ) |
||
| uniioombl.n | |- ( ph -> N e. NN ) |
||
| uniioombl.n2 | |- ( ph -> A. j e. ( 1 ... M ) ( abs ` ( sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / M ) ) |
||
| uniioombl.l | |- L = U. ( ( (,) o. F ) " ( 1 ... N ) ) |
||
| Assertion | uniioombllem4 | |- ( ph -> ( vol* ` ( K i^i A ) ) <_ ( ( vol* ` ( K i^i L ) ) + C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 2 | uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
|
| 3 | uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 4 | uniioombl.a | |- A = U. ran ( (,) o. F ) |
|
| 5 | uniioombl.e | |- ( ph -> ( vol* ` E ) e. RR ) |
|
| 6 | uniioombl.c | |- ( ph -> C e. RR+ ) |
|
| 7 | uniioombl.g | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 8 | uniioombl.s | |- ( ph -> E C_ U. ran ( (,) o. G ) ) |
|
| 9 | uniioombl.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
|
| 10 | uniioombl.v | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
|
| 11 | uniioombl.m | |- ( ph -> M e. NN ) |
|
| 12 | uniioombl.m2 | |- ( ph -> ( abs ` ( ( T ` M ) - sup ( ran T , RR* , < ) ) ) < C ) |
|
| 13 | uniioombl.k | |- K = U. ( ( (,) o. G ) " ( 1 ... M ) ) |
|
| 14 | uniioombl.n | |- ( ph -> N e. NN ) |
|
| 15 | uniioombl.n2 | |- ( ph -> A. j e. ( 1 ... M ) ( abs ` ( sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / M ) ) |
|
| 16 | uniioombl.l | |- L = U. ( ( (,) o. F ) " ( 1 ... N ) ) |
|
| 17 | inss1 | |- ( K i^i A ) C_ K |
|
| 18 | imassrn | |- ( ( (,) o. G ) " ( 1 ... M ) ) C_ ran ( (,) o. G ) |
|
| 19 | 18 | unissi | |- U. ( ( (,) o. G ) " ( 1 ... M ) ) C_ U. ran ( (,) o. G ) |
| 20 | 13 19 | eqsstri | |- K C_ U. ran ( (,) o. G ) |
| 21 | 7 | uniiccdif | |- ( ph -> ( U. ran ( (,) o. G ) C_ U. ran ( [,] o. G ) /\ ( vol* ` ( U. ran ( [,] o. G ) \ U. ran ( (,) o. G ) ) ) = 0 ) ) |
| 22 | 21 | simpld | |- ( ph -> U. ran ( (,) o. G ) C_ U. ran ( [,] o. G ) ) |
| 23 | ovolficcss | |- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. G ) C_ RR ) |
|
| 24 | 7 23 | syl | |- ( ph -> U. ran ( [,] o. G ) C_ RR ) |
| 25 | 22 24 | sstrd | |- ( ph -> U. ran ( (,) o. G ) C_ RR ) |
| 26 | 20 25 | sstrid | |- ( ph -> K C_ RR ) |
| 27 | 1 2 3 4 5 6 7 8 9 10 | uniioombllem1 | |- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
| 28 | ssid | |- U. ran ( (,) o. G ) C_ U. ran ( (,) o. G ) |
|
| 29 | 9 | ovollb | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ U. ran ( (,) o. G ) C_ U. ran ( (,) o. G ) ) -> ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) ) |
| 30 | 7 28 29 | sylancl | |- ( ph -> ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) ) |
| 31 | ovollecl | |- ( ( U. ran ( (,) o. G ) C_ RR /\ sup ( ran T , RR* , < ) e. RR /\ ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) ) -> ( vol* ` U. ran ( (,) o. G ) ) e. RR ) |
|
| 32 | 25 27 30 31 | syl3anc | |- ( ph -> ( vol* ` U. ran ( (,) o. G ) ) e. RR ) |
| 33 | ovolsscl | |- ( ( K C_ U. ran ( (,) o. G ) /\ U. ran ( (,) o. G ) C_ RR /\ ( vol* ` U. ran ( (,) o. G ) ) e. RR ) -> ( vol* ` K ) e. RR ) |
|
| 34 | 20 25 32 33 | mp3an2i | |- ( ph -> ( vol* ` K ) e. RR ) |
| 35 | ovolsscl | |- ( ( ( K i^i A ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` ( K i^i A ) ) e. RR ) |
|
| 36 | 17 26 34 35 | mp3an2i | |- ( ph -> ( vol* ` ( K i^i A ) ) e. RR ) |
| 37 | inss1 | |- ( K i^i L ) C_ K |
|
| 38 | ovolsscl | |- ( ( ( K i^i L ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` ( K i^i L ) ) e. RR ) |
|
| 39 | 37 26 34 38 | mp3an2i | |- ( ph -> ( vol* ` ( K i^i L ) ) e. RR ) |
| 40 | ssun2 | |- U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( ( K i^i L ) u. U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
|
| 41 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 42 | 14 | peano2nnd | |- ( ph -> ( N + 1 ) e. NN ) |
| 43 | 42 41 | eleqtrdi | |- ( ph -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
| 44 | uzsplit | |- ( ( N + 1 ) e. ( ZZ>= ` 1 ) -> ( ZZ>= ` 1 ) = ( ( 1 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
|
| 45 | 43 44 | syl | |- ( ph -> ( ZZ>= ` 1 ) = ( ( 1 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 46 | 41 45 | eqtrid | |- ( ph -> NN = ( ( 1 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 47 | 14 | nncnd | |- ( ph -> N e. CC ) |
| 48 | ax-1cn | |- 1 e. CC |
|
| 49 | pncan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
|
| 50 | 47 48 49 | sylancl | |- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
| 51 | 50 | oveq2d | |- ( ph -> ( 1 ... ( ( N + 1 ) - 1 ) ) = ( 1 ... N ) ) |
| 52 | 51 | uneq1d | |- ( ph -> ( ( 1 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) = ( ( 1 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 53 | 46 52 | eqtrd | |- ( ph -> NN = ( ( 1 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 54 | 53 | iuneq1d | |- ( ph -> U_ i e. NN ( (,) ` ( F ` i ) ) = U_ i e. ( ( 1 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) ( (,) ` ( F ` i ) ) ) |
| 55 | iunxun | |- U_ i e. ( ( 1 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) ( (,) ` ( F ` i ) ) = ( U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) |
|
| 56 | 54 55 | eqtrdi | |- ( ph -> U_ i e. NN ( (,) ` ( F ` i ) ) = ( U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
| 57 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 58 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 59 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 60 | 58 59 | sstri | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 61 | fss | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) |
|
| 62 | 1 60 61 | sylancl | |- ( ph -> F : NN --> ( RR* X. RR* ) ) |
| 63 | fco | |- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
|
| 64 | 57 62 63 | sylancr | |- ( ph -> ( (,) o. F ) : NN --> ~P RR ) |
| 65 | ffn | |- ( ( (,) o. F ) : NN --> ~P RR -> ( (,) o. F ) Fn NN ) |
|
| 66 | fniunfv | |- ( ( (,) o. F ) Fn NN -> U_ i e. NN ( ( (,) o. F ) ` i ) = U. ran ( (,) o. F ) ) |
|
| 67 | 64 65 66 | 3syl | |- ( ph -> U_ i e. NN ( ( (,) o. F ) ` i ) = U. ran ( (,) o. F ) ) |
| 68 | fvco3 | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ i e. NN ) -> ( ( (,) o. F ) ` i ) = ( (,) ` ( F ` i ) ) ) |
|
| 69 | 1 68 | sylan | |- ( ( ph /\ i e. NN ) -> ( ( (,) o. F ) ` i ) = ( (,) ` ( F ` i ) ) ) |
| 70 | 69 | iuneq2dv | |- ( ph -> U_ i e. NN ( ( (,) o. F ) ` i ) = U_ i e. NN ( (,) ` ( F ` i ) ) ) |
| 71 | 67 70 | eqtr3d | |- ( ph -> U. ran ( (,) o. F ) = U_ i e. NN ( (,) ` ( F ` i ) ) ) |
| 72 | 4 71 | eqtrid | |- ( ph -> A = U_ i e. NN ( (,) ` ( F ` i ) ) ) |
| 73 | ffun | |- ( ( (,) o. F ) : NN --> ~P RR -> Fun ( (,) o. F ) ) |
|
| 74 | funiunfv | |- ( Fun ( (,) o. F ) -> U_ i e. ( 1 ... N ) ( ( (,) o. F ) ` i ) = U. ( ( (,) o. F ) " ( 1 ... N ) ) ) |
|
| 75 | 64 73 74 | 3syl | |- ( ph -> U_ i e. ( 1 ... N ) ( ( (,) o. F ) ` i ) = U. ( ( (,) o. F ) " ( 1 ... N ) ) ) |
| 76 | elfznn | |- ( i e. ( 1 ... N ) -> i e. NN ) |
|
| 77 | 1 76 68 | syl2an | |- ( ( ph /\ i e. ( 1 ... N ) ) -> ( ( (,) o. F ) ` i ) = ( (,) ` ( F ` i ) ) ) |
| 78 | 77 | iuneq2dv | |- ( ph -> U_ i e. ( 1 ... N ) ( ( (,) o. F ) ` i ) = U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) ) |
| 79 | 75 78 | eqtr3d | |- ( ph -> U. ( ( (,) o. F ) " ( 1 ... N ) ) = U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) ) |
| 80 | 16 79 | eqtrid | |- ( ph -> L = U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) ) |
| 81 | 80 | uneq1d | |- ( ph -> ( L u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = ( U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
| 82 | 56 72 81 | 3eqtr4d | |- ( ph -> A = ( L u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
| 83 | 82 | ineq2d | |- ( ph -> ( K i^i A ) = ( K i^i ( L u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) ) |
| 84 | indi | |- ( K i^i ( L u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) = ( ( K i^i L ) u. ( K i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
|
| 85 | 83 84 | eqtrdi | |- ( ph -> ( K i^i A ) = ( ( K i^i L ) u. ( K i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) ) |
| 86 | fss | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> G : NN --> ( RR* X. RR* ) ) |
|
| 87 | 7 60 86 | sylancl | |- ( ph -> G : NN --> ( RR* X. RR* ) ) |
| 88 | fco | |- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ G : NN --> ( RR* X. RR* ) ) -> ( (,) o. G ) : NN --> ~P RR ) |
|
| 89 | 57 87 88 | sylancr | |- ( ph -> ( (,) o. G ) : NN --> ~P RR ) |
| 90 | ffun | |- ( ( (,) o. G ) : NN --> ~P RR -> Fun ( (,) o. G ) ) |
|
| 91 | funiunfv | |- ( Fun ( (,) o. G ) -> U_ j e. ( 1 ... M ) ( ( (,) o. G ) ` j ) = U. ( ( (,) o. G ) " ( 1 ... M ) ) ) |
|
| 92 | 89 90 91 | 3syl | |- ( ph -> U_ j e. ( 1 ... M ) ( ( (,) o. G ) ` j ) = U. ( ( (,) o. G ) " ( 1 ... M ) ) ) |
| 93 | elfznn | |- ( j e. ( 1 ... M ) -> j e. NN ) |
|
| 94 | fvco3 | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( ( (,) o. G ) ` j ) = ( (,) ` ( G ` j ) ) ) |
|
| 95 | 7 93 94 | syl2an | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) o. G ) ` j ) = ( (,) ` ( G ` j ) ) ) |
| 96 | 95 | iuneq2dv | |- ( ph -> U_ j e. ( 1 ... M ) ( ( (,) o. G ) ` j ) = U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) |
| 97 | 92 96 | eqtr3d | |- ( ph -> U. ( ( (,) o. G ) " ( 1 ... M ) ) = U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) |
| 98 | 13 97 | eqtrid | |- ( ph -> K = U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) |
| 99 | 98 | ineq2d | |- ( ph -> ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i K ) = ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) ) |
| 100 | incom | |- ( K i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i K ) |
|
| 101 | iunin2 | |- U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( G ` j ) ) i^i ( (,) ` ( F ` i ) ) ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) |
|
| 102 | incom | |- ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i ( (,) ` ( F ` i ) ) ) |
|
| 103 | 102 | a1i | |- ( i e. ( ZZ>= ` ( N + 1 ) ) -> ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i ( (,) ` ( F ` i ) ) ) ) |
| 104 | 103 | iuneq2i | |- U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( G ` j ) ) i^i ( (,) ` ( F ` i ) ) ) |
| 105 | incom | |- ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) |
|
| 106 | 101 104 105 | 3eqtr4ri | |- ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) |
| 107 | 106 | a1i | |- ( j e. ( 1 ... M ) -> ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
| 108 | 107 | iuneq2i | |- U_ j e. ( 1 ... M ) ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) |
| 109 | iunin2 | |- U_ j e. ( 1 ... M ) ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) |
|
| 110 | 108 109 | eqtr3i | |- U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) |
| 111 | 99 100 110 | 3eqtr4g | |- ( ph -> ( K i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
| 112 | 111 | uneq2d | |- ( ph -> ( ( K i^i L ) u. ( K i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) = ( ( K i^i L ) u. U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 113 | 85 112 | eqtrd | |- ( ph -> ( K i^i A ) = ( ( K i^i L ) u. U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 114 | 40 113 | sseqtrrid | |- ( ph -> U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( K i^i A ) ) |
| 115 | 114 17 | sstrdi | |- ( ph -> U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ K ) |
| 116 | ovolsscl | |- ( ( U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
|
| 117 | 115 26 34 116 | syl3anc | |- ( ph -> ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
| 118 | 39 117 | readdcld | |- ( ph -> ( ( vol* ` ( K i^i L ) ) + ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) e. RR ) |
| 119 | 6 | rpred | |- ( ph -> C e. RR ) |
| 120 | 39 119 | readdcld | |- ( ph -> ( ( vol* ` ( K i^i L ) ) + C ) e. RR ) |
| 121 | 113 | fveq2d | |- ( ph -> ( vol* ` ( K i^i A ) ) = ( vol* ` ( ( K i^i L ) u. U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) |
| 122 | 37 26 | sstrid | |- ( ph -> ( K i^i L ) C_ RR ) |
| 123 | 115 26 | sstrd | |- ( ph -> U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ RR ) |
| 124 | ovolun | |- ( ( ( ( K i^i L ) C_ RR /\ ( vol* ` ( K i^i L ) ) e. RR ) /\ ( U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ RR /\ ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) ) -> ( vol* ` ( ( K i^i L ) u. U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) <_ ( ( vol* ` ( K i^i L ) ) + ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) |
|
| 125 | 122 39 123 117 124 | syl22anc | |- ( ph -> ( vol* ` ( ( K i^i L ) u. U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) <_ ( ( vol* ` ( K i^i L ) ) + ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) |
| 126 | 121 125 | eqbrtrd | |- ( ph -> ( vol* ` ( K i^i A ) ) <_ ( ( vol* ` ( K i^i L ) ) + ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) |
| 127 | fzfid | |- ( ph -> ( 1 ... M ) e. Fin ) |
|
| 128 | iunss | |- ( U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ K <-> A. j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ K ) |
|
| 129 | 115 128 | sylib | |- ( ph -> A. j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ K ) |
| 130 | 129 | r19.21bi | |- ( ( ph /\ j e. ( 1 ... M ) ) -> U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ K ) |
| 131 | 26 | adantr | |- ( ( ph /\ j e. ( 1 ... M ) ) -> K C_ RR ) |
| 132 | 34 | adantr | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` K ) e. RR ) |
| 133 | ovolsscl | |- ( ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
|
| 134 | 130 131 132 133 | syl3anc | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
| 135 | 127 134 | fsumrecl | |- ( ph -> sum_ j e. ( 1 ... M ) ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
| 136 | 130 131 | sstrd | |- ( ( ph /\ j e. ( 1 ... M ) ) -> U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ RR ) |
| 137 | 136 134 | jca | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ RR /\ ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) ) |
| 138 | 137 | ralrimiva | |- ( ph -> A. j e. ( 1 ... M ) ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ RR /\ ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) ) |
| 139 | ovolfiniun | |- ( ( ( 1 ... M ) e. Fin /\ A. j e. ( 1 ... M ) ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ RR /\ ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) ) -> ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) <_ sum_ j e. ( 1 ... M ) ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
|
| 140 | 127 138 139 | syl2anc | |- ( ph -> ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) <_ sum_ j e. ( 1 ... M ) ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 141 | 119 11 | nndivred | |- ( ph -> ( C / M ) e. RR ) |
| 142 | 141 | adantr | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( C / M ) e. RR ) |
| 143 | 80 | ineq2d | |- ( ph -> ( ( (,) ` ( G ` j ) ) i^i L ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) ) ) |
| 144 | 143 | adantr | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) ` ( G ` j ) ) i^i L ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) ) ) |
| 145 | 102 | a1i | |- ( i e. ( 1 ... N ) -> ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i ( (,) ` ( F ` i ) ) ) ) |
| 146 | 145 | iuneq2i | |- U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = U_ i e. ( 1 ... N ) ( ( (,) ` ( G ` j ) ) i^i ( (,) ` ( F ` i ) ) ) |
| 147 | iunin2 | |- U_ i e. ( 1 ... N ) ( ( (,) ` ( G ` j ) ) i^i ( (,) ` ( F ` i ) ) ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) ) |
|
| 148 | 146 147 | eqtri | |- U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) ) |
| 149 | 144 148 | eqtr4di | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) ` ( G ` j ) ) i^i L ) = U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
| 150 | fzfid | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( 1 ... N ) e. Fin ) |
|
| 151 | ffvelcdm | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ i e. NN ) -> ( F ` i ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 152 | 1 76 151 | syl2an | |- ( ( ph /\ i e. ( 1 ... N ) ) -> ( F ` i ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 153 | 152 | elin2d | |- ( ( ph /\ i e. ( 1 ... N ) ) -> ( F ` i ) e. ( RR X. RR ) ) |
| 154 | 1st2nd2 | |- ( ( F ` i ) e. ( RR X. RR ) -> ( F ` i ) = <. ( 1st ` ( F ` i ) ) , ( 2nd ` ( F ` i ) ) >. ) |
|
| 155 | 153 154 | syl | |- ( ( ph /\ i e. ( 1 ... N ) ) -> ( F ` i ) = <. ( 1st ` ( F ` i ) ) , ( 2nd ` ( F ` i ) ) >. ) |
| 156 | 155 | fveq2d | |- ( ( ph /\ i e. ( 1 ... N ) ) -> ( (,) ` ( F ` i ) ) = ( (,) ` <. ( 1st ` ( F ` i ) ) , ( 2nd ` ( F ` i ) ) >. ) ) |
| 157 | df-ov | |- ( ( 1st ` ( F ` i ) ) (,) ( 2nd ` ( F ` i ) ) ) = ( (,) ` <. ( 1st ` ( F ` i ) ) , ( 2nd ` ( F ` i ) ) >. ) |
|
| 158 | 156 157 | eqtr4di | |- ( ( ph /\ i e. ( 1 ... N ) ) -> ( (,) ` ( F ` i ) ) = ( ( 1st ` ( F ` i ) ) (,) ( 2nd ` ( F ` i ) ) ) ) |
| 159 | ioombl | |- ( ( 1st ` ( F ` i ) ) (,) ( 2nd ` ( F ` i ) ) ) e. dom vol |
|
| 160 | 158 159 | eqeltrdi | |- ( ( ph /\ i e. ( 1 ... N ) ) -> ( (,) ` ( F ` i ) ) e. dom vol ) |
| 161 | 160 | adantlr | |- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( (,) ` ( F ` i ) ) e. dom vol ) |
| 162 | ffvelcdm | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( G ` j ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 163 | 7 93 162 | syl2an | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( G ` j ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 164 | 163 | elin2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( G ` j ) e. ( RR X. RR ) ) |
| 165 | 1st2nd2 | |- ( ( G ` j ) e. ( RR X. RR ) -> ( G ` j ) = <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
|
| 166 | 164 165 | syl | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( G ` j ) = <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
| 167 | 166 | fveq2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( (,) ` ( G ` j ) ) = ( (,) ` <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) ) |
| 168 | df-ov | |- ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) = ( (,) ` <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
|
| 169 | 167 168 | eqtr4di | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( (,) ` ( G ` j ) ) = ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) |
| 170 | ioombl | |- ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) e. dom vol |
|
| 171 | 169 170 | eqeltrdi | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( (,) ` ( G ` j ) ) e. dom vol ) |
| 172 | 171 | adantr | |- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( (,) ` ( G ` j ) ) e. dom vol ) |
| 173 | inmbl | |- ( ( ( (,) ` ( F ` i ) ) e. dom vol /\ ( (,) ` ( G ` j ) ) e. dom vol ) -> ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol ) |
|
| 174 | 161 172 173 | syl2anc | |- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol ) |
| 175 | 174 | ralrimiva | |- ( ( ph /\ j e. ( 1 ... M ) ) -> A. i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol ) |
| 176 | finiunmbl | |- ( ( ( 1 ... N ) e. Fin /\ A. i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol ) -> U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol ) |
|
| 177 | 150 175 176 | syl2anc | |- ( ( ph /\ j e. ( 1 ... M ) ) -> U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol ) |
| 178 | 149 177 | eqeltrd | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) ` ( G ` j ) ) i^i L ) e. dom vol ) |
| 179 | inss2 | |- ( ( (,) ` ( G ` j ) ) i^i A ) C_ A |
|
| 180 | 1 | uniiccdif | |- ( ph -> ( U. ran ( (,) o. F ) C_ U. ran ( [,] o. F ) /\ ( vol* ` ( U. ran ( [,] o. F ) \ U. ran ( (,) o. F ) ) ) = 0 ) ) |
| 181 | 180 | simpld | |- ( ph -> U. ran ( (,) o. F ) C_ U. ran ( [,] o. F ) ) |
| 182 | ovolficcss | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. F ) C_ RR ) |
|
| 183 | 1 182 | syl | |- ( ph -> U. ran ( [,] o. F ) C_ RR ) |
| 184 | 181 183 | sstrd | |- ( ph -> U. ran ( (,) o. F ) C_ RR ) |
| 185 | 4 184 | eqsstrid | |- ( ph -> A C_ RR ) |
| 186 | 185 | adantr | |- ( ( ph /\ j e. ( 1 ... M ) ) -> A C_ RR ) |
| 187 | 179 186 | sstrid | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) ` ( G ` j ) ) i^i A ) C_ RR ) |
| 188 | inss1 | |- ( ( (,) ` ( G ` j ) ) i^i A ) C_ ( (,) ` ( G ` j ) ) |
|
| 189 | ioossre | |- ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) C_ RR |
|
| 190 | 169 189 | eqsstrdi | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( (,) ` ( G ` j ) ) C_ RR ) |
| 191 | 169 | fveq2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) = ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) ) |
| 192 | ovolfcl | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) |
|
| 193 | 7 93 192 | syl2an | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) |
| 194 | ovolioo | |- ( ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) -> ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
|
| 195 | 193 194 | syl | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
| 196 | 191 195 | eqtrd | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
| 197 | 193 | simp2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( 2nd ` ( G ` j ) ) e. RR ) |
| 198 | 193 | simp1d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( 1st ` ( G ` j ) ) e. RR ) |
| 199 | 197 198 | resubcld | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) e. RR ) |
| 200 | 196 199 | eqeltrd | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) |
| 201 | ovolsscl | |- ( ( ( ( (,) ` ( G ` j ) ) i^i A ) C_ ( (,) ` ( G ` j ) ) /\ ( (,) ` ( G ` j ) ) C_ RR /\ ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) e. RR ) |
|
| 202 | 188 190 200 201 | mp3an2i | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) e. RR ) |
| 203 | mblsplit | |- ( ( ( ( (,) ` ( G ` j ) ) i^i L ) e. dom vol /\ ( ( (,) ` ( G ` j ) ) i^i A ) C_ RR /\ ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) e. RR ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) = ( ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) i^i ( ( (,) ` ( G ` j ) ) i^i L ) ) ) + ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) \ ( ( (,) ` ( G ` j ) ) i^i L ) ) ) ) ) |
|
| 204 | 178 187 202 203 | syl3anc | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) = ( ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) i^i ( ( (,) ` ( G ` j ) ) i^i L ) ) ) + ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) \ ( ( (,) ` ( G ` j ) ) i^i L ) ) ) ) ) |
| 205 | imassrn | |- ( ( (,) o. F ) " ( 1 ... N ) ) C_ ran ( (,) o. F ) |
|
| 206 | 205 | unissi | |- U. ( ( (,) o. F ) " ( 1 ... N ) ) C_ U. ran ( (,) o. F ) |
| 207 | 206 16 4 | 3sstr4i | |- L C_ A |
| 208 | sslin | |- ( L C_ A -> ( ( (,) ` ( G ` j ) ) i^i L ) C_ ( ( (,) ` ( G ` j ) ) i^i A ) ) |
|
| 209 | 207 208 | mp1i | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) ` ( G ` j ) ) i^i L ) C_ ( ( (,) ` ( G ` j ) ) i^i A ) ) |
| 210 | sseqin2 | |- ( ( ( (,) ` ( G ` j ) ) i^i L ) C_ ( ( (,) ` ( G ` j ) ) i^i A ) <-> ( ( ( (,) ` ( G ` j ) ) i^i A ) i^i ( ( (,) ` ( G ` j ) ) i^i L ) ) = ( ( (,) ` ( G ` j ) ) i^i L ) ) |
|
| 211 | 209 210 | sylib | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( ( (,) ` ( G ` j ) ) i^i A ) i^i ( ( (,) ` ( G ` j ) ) i^i L ) ) = ( ( (,) ` ( G ` j ) ) i^i L ) ) |
| 212 | 211 | fveq2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) i^i ( ( (,) ` ( G ` j ) ) i^i L ) ) ) = ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) ) |
| 213 | indifdir | |- ( ( A \ L ) i^i ( (,) ` ( G ` j ) ) ) = ( ( A i^i ( (,) ` ( G ` j ) ) ) \ ( L i^i ( (,) ` ( G ` j ) ) ) ) |
|
| 214 | incom | |- ( A i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i A ) |
|
| 215 | incom | |- ( L i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i L ) |
|
| 216 | 214 215 | difeq12i | |- ( ( A i^i ( (,) ` ( G ` j ) ) ) \ ( L i^i ( (,) ` ( G ` j ) ) ) ) = ( ( ( (,) ` ( G ` j ) ) i^i A ) \ ( ( (,) ` ( G ` j ) ) i^i L ) ) |
| 217 | 213 216 | eqtri | |- ( ( A \ L ) i^i ( (,) ` ( G ` j ) ) ) = ( ( ( (,) ` ( G ` j ) ) i^i A ) \ ( ( (,) ` ( G ` j ) ) i^i L ) ) |
| 218 | 82 | eqcomd | |- ( ph -> ( L u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = A ) |
| 219 | 80 | ineq1d | |- ( ph -> ( L i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = ( U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
| 220 | 2fveq3 | |- ( x = i -> ( (,) ` ( F ` x ) ) = ( (,) ` ( F ` i ) ) ) |
|
| 221 | 220 | cbvdisjv | |- ( Disj_ x e. NN ( (,) ` ( F ` x ) ) <-> Disj_ i e. NN ( (,) ` ( F ` i ) ) ) |
| 222 | 2 221 | sylib | |- ( ph -> Disj_ i e. NN ( (,) ` ( F ` i ) ) ) |
| 223 | fz1ssnn | |- ( 1 ... N ) C_ NN |
|
| 224 | 223 | a1i | |- ( ph -> ( 1 ... N ) C_ NN ) |
| 225 | uzss | |- ( ( N + 1 ) e. ( ZZ>= ` 1 ) -> ( ZZ>= ` ( N + 1 ) ) C_ ( ZZ>= ` 1 ) ) |
|
| 226 | 43 225 | syl | |- ( ph -> ( ZZ>= ` ( N + 1 ) ) C_ ( ZZ>= ` 1 ) ) |
| 227 | 226 41 | sseqtrrdi | |- ( ph -> ( ZZ>= ` ( N + 1 ) ) C_ NN ) |
| 228 | 51 | ineq1d | |- ( ph -> ( ( 1 ... ( ( N + 1 ) - 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) ) = ( ( 1 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) |
| 229 | uzdisj | |- ( ( 1 ... ( ( N + 1 ) - 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) |
|
| 230 | 228 229 | eqtr3di | |- ( ph -> ( ( 1 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) ) |
| 231 | disjiun | |- ( ( Disj_ i e. NN ( (,) ` ( F ` i ) ) /\ ( ( 1 ... N ) C_ NN /\ ( ZZ>= ` ( N + 1 ) ) C_ NN /\ ( ( 1 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) ) ) -> ( U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = (/) ) |
|
| 232 | 222 224 227 230 231 | syl13anc | |- ( ph -> ( U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = (/) ) |
| 233 | 219 232 | eqtrd | |- ( ph -> ( L i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = (/) ) |
| 234 | uneqdifeq | |- ( ( L C_ A /\ ( L i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = (/) ) -> ( ( L u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = A <-> ( A \ L ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
|
| 235 | 207 233 234 | sylancr | |- ( ph -> ( ( L u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = A <-> ( A \ L ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
| 236 | 218 235 | mpbid | |- ( ph -> ( A \ L ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) |
| 237 | 236 | adantr | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( A \ L ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) |
| 238 | 237 | ineq2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) ` ( G ` j ) ) i^i ( A \ L ) ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
| 239 | incom | |- ( ( A \ L ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i ( A \ L ) ) |
|
| 240 | 104 101 | eqtri | |- U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) |
| 241 | 238 239 240 | 3eqtr4g | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( A \ L ) i^i ( (,) ` ( G ` j ) ) ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
| 242 | 217 241 | eqtr3id | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( ( (,) ` ( G ` j ) ) i^i A ) \ ( ( (,) ` ( G ` j ) ) i^i L ) ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
| 243 | 242 | fveq2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) \ ( ( (,) ` ( G ` j ) ) i^i L ) ) ) = ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 244 | 212 243 | oveq12d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) i^i ( ( (,) ` ( G ` j ) ) i^i L ) ) ) + ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) \ ( ( (,) ` ( G ` j ) ) i^i L ) ) ) ) = ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) |
| 245 | 204 244 | eqtrd | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) = ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) |
| 246 | 202 142 | resubcld | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) - ( C / M ) ) e. RR ) |
| 247 | inss2 | |- ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( G ` j ) ) |
|
| 248 | 190 | adantr | |- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( (,) ` ( G ` j ) ) C_ RR ) |
| 249 | 200 | adantr | |- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) |
| 250 | ovolsscl | |- ( ( ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( G ` j ) ) /\ ( (,) ` ( G ` j ) ) C_ RR /\ ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
|
| 251 | 247 248 249 250 | mp3an2i | |- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
| 252 | 150 251 | fsumrecl | |- ( ( ph /\ j e. ( 1 ... M ) ) -> sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
| 253 | 15 | r19.21bi | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( abs ` ( sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / M ) ) |
| 254 | 252 202 142 | absdifltd | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( abs ` ( sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / M ) <-> ( ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) - ( C / M ) ) < sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) /\ sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) < ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) + ( C / M ) ) ) ) ) |
| 255 | 253 254 | mpbid | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) - ( C / M ) ) < sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) /\ sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) < ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) + ( C / M ) ) ) ) |
| 256 | 255 | simpld | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) - ( C / M ) ) < sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 257 | 246 252 256 | ltled | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) - ( C / M ) ) <_ sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 258 | 149 | fveq2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) = ( vol* ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 259 | mblvol | |- ( ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol -> ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
|
| 260 | 174 259 | syl | |- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 261 | 260 251 | eqeltrd | |- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
| 262 | 174 261 | jca | |- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol /\ ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) ) |
| 263 | 262 | ralrimiva | |- ( ( ph /\ j e. ( 1 ... M ) ) -> A. i e. ( 1 ... N ) ( ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol /\ ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) ) |
| 264 | inss1 | |- ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( F ` i ) ) |
|
| 265 | 264 | rgenw | |- A. i e. NN ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( F ` i ) ) |
| 266 | 222 | adantr | |- ( ( ph /\ j e. ( 1 ... M ) ) -> Disj_ i e. NN ( (,) ` ( F ` i ) ) ) |
| 267 | disjss2 | |- ( A. i e. NN ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( F ` i ) ) -> ( Disj_ i e. NN ( (,) ` ( F ` i ) ) -> Disj_ i e. NN ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
|
| 268 | 265 266 267 | mpsyl | |- ( ( ph /\ j e. ( 1 ... M ) ) -> Disj_ i e. NN ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
| 269 | disjss1 | |- ( ( 1 ... N ) C_ NN -> ( Disj_ i e. NN ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) -> Disj_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
|
| 270 | 223 268 269 | mpsyl | |- ( ( ph /\ j e. ( 1 ... M ) ) -> Disj_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
| 271 | volfiniun | |- ( ( ( 1 ... N ) e. Fin /\ A. i e. ( 1 ... N ) ( ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol /\ ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) /\ Disj_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) -> ( vol ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ i e. ( 1 ... N ) ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
|
| 272 | 150 263 270 271 | syl3anc | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ i e. ( 1 ... N ) ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 273 | mblvol | |- ( U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol -> ( vol ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( vol* ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
|
| 274 | 177 273 | syl | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( vol* ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 275 | 260 | sumeq2dv | |- ( ( ph /\ j e. ( 1 ... M ) ) -> sum_ i e. ( 1 ... N ) ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 276 | 272 274 275 | 3eqtr3d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 277 | 258 276 | eqtrd | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) = sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
| 278 | 257 277 | breqtrrd | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) - ( C / M ) ) <_ ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) ) |
| 279 | 277 252 | eqeltrd | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) e. RR ) |
| 280 | 202 142 279 | lesubaddd | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) - ( C / M ) ) <_ ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) <-> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) <_ ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( C / M ) ) ) ) |
| 281 | 278 280 | mpbid | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) <_ ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( C / M ) ) ) |
| 282 | 245 281 | eqbrtrrd | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) <_ ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( C / M ) ) ) |
| 283 | 134 142 279 | leadd2d | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) <_ ( C / M ) <-> ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) <_ ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( C / M ) ) ) ) |
| 284 | 282 283 | mpbird | |- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) <_ ( C / M ) ) |
| 285 | 127 134 142 284 | fsumle | |- ( ph -> sum_ j e. ( 1 ... M ) ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) <_ sum_ j e. ( 1 ... M ) ( C / M ) ) |
| 286 | 141 | recnd | |- ( ph -> ( C / M ) e. CC ) |
| 287 | fsumconst | |- ( ( ( 1 ... M ) e. Fin /\ ( C / M ) e. CC ) -> sum_ j e. ( 1 ... M ) ( C / M ) = ( ( # ` ( 1 ... M ) ) x. ( C / M ) ) ) |
|
| 288 | 127 286 287 | syl2anc | |- ( ph -> sum_ j e. ( 1 ... M ) ( C / M ) = ( ( # ` ( 1 ... M ) ) x. ( C / M ) ) ) |
| 289 | nnnn0 | |- ( M e. NN -> M e. NN0 ) |
|
| 290 | hashfz1 | |- ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) |
|
| 291 | 11 289 290 | 3syl | |- ( ph -> ( # ` ( 1 ... M ) ) = M ) |
| 292 | 291 | oveq1d | |- ( ph -> ( ( # ` ( 1 ... M ) ) x. ( C / M ) ) = ( M x. ( C / M ) ) ) |
| 293 | 119 | recnd | |- ( ph -> C e. CC ) |
| 294 | 11 | nncnd | |- ( ph -> M e. CC ) |
| 295 | 11 | nnne0d | |- ( ph -> M =/= 0 ) |
| 296 | 293 294 295 | divcan2d | |- ( ph -> ( M x. ( C / M ) ) = C ) |
| 297 | 288 292 296 | 3eqtrd | |- ( ph -> sum_ j e. ( 1 ... M ) ( C / M ) = C ) |
| 298 | 285 297 | breqtrd | |- ( ph -> sum_ j e. ( 1 ... M ) ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) <_ C ) |
| 299 | 117 135 119 140 298 | letrd | |- ( ph -> ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) <_ C ) |
| 300 | 117 119 39 299 | leadd2dd | |- ( ph -> ( ( vol* ` ( K i^i L ) ) + ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) <_ ( ( vol* ` ( K i^i L ) ) + C ) ) |
| 301 | 36 118 120 126 300 | letrd | |- ( ph -> ( vol* ` ( K i^i A ) ) <_ ( ( vol* ` ( K i^i L ) ) + C ) ) |