This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for image over union. Theorem 35 of Suppes p. 65. (Contributed by NM, 30-Sep-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imaundi | |- ( A " ( B u. C ) ) = ( ( A " B ) u. ( A " C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi | |- ( A |` ( B u. C ) ) = ( ( A |` B ) u. ( A |` C ) ) |
|
| 2 | 1 | rneqi | |- ran ( A |` ( B u. C ) ) = ran ( ( A |` B ) u. ( A |` C ) ) |
| 3 | rnun | |- ran ( ( A |` B ) u. ( A |` C ) ) = ( ran ( A |` B ) u. ran ( A |` C ) ) |
|
| 4 | 2 3 | eqtri | |- ran ( A |` ( B u. C ) ) = ( ran ( A |` B ) u. ran ( A |` C ) ) |
| 5 | df-ima | |- ( A " ( B u. C ) ) = ran ( A |` ( B u. C ) ) |
|
| 6 | df-ima | |- ( A " B ) = ran ( A |` B ) |
|
| 7 | df-ima | |- ( A " C ) = ran ( A |` C ) |
|
| 8 | 6 7 | uneq12i | |- ( ( A " B ) u. ( A " C ) ) = ( ran ( A |` B ) u. ran ( A |` C ) ) |
| 9 | 4 5 8 | 3eqtr4i | |- ( A " ( B u. C ) ) = ( ( A " B ) u. ( A " C ) ) |