This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue outer measure function is finitely sub-additive. (Unlike the stronger ovoliun , this does not require any choice principles.) (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolun | |- ( ( ( A C_ RR /\ ( vol* ` A ) e. RR ) /\ ( B C_ RR /\ ( vol* ` B ) e. RR ) ) -> ( vol* ` ( A u. B ) ) <_ ( ( vol* ` A ) + ( vol* ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( ( A C_ RR /\ ( vol* ` A ) e. RR ) /\ ( B C_ RR /\ ( vol* ` B ) e. RR ) ) /\ x e. RR+ ) -> ( A C_ RR /\ ( vol* ` A ) e. RR ) ) |
|
| 2 | simplr | |- ( ( ( ( A C_ RR /\ ( vol* ` A ) e. RR ) /\ ( B C_ RR /\ ( vol* ` B ) e. RR ) ) /\ x e. RR+ ) -> ( B C_ RR /\ ( vol* ` B ) e. RR ) ) |
|
| 3 | simpr | |- ( ( ( ( A C_ RR /\ ( vol* ` A ) e. RR ) /\ ( B C_ RR /\ ( vol* ` B ) e. RR ) ) /\ x e. RR+ ) -> x e. RR+ ) |
|
| 4 | 1 2 3 | ovolunlem2 | |- ( ( ( ( A C_ RR /\ ( vol* ` A ) e. RR ) /\ ( B C_ RR /\ ( vol* ` B ) e. RR ) ) /\ x e. RR+ ) -> ( vol* ` ( A u. B ) ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + x ) ) |
| 5 | 4 | ralrimiva | |- ( ( ( A C_ RR /\ ( vol* ` A ) e. RR ) /\ ( B C_ RR /\ ( vol* ` B ) e. RR ) ) -> A. x e. RR+ ( vol* ` ( A u. B ) ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + x ) ) |
| 6 | unss | |- ( ( A C_ RR /\ B C_ RR ) <-> ( A u. B ) C_ RR ) |
|
| 7 | 6 | biimpi | |- ( ( A C_ RR /\ B C_ RR ) -> ( A u. B ) C_ RR ) |
| 8 | 7 | ad2ant2r | |- ( ( ( A C_ RR /\ ( vol* ` A ) e. RR ) /\ ( B C_ RR /\ ( vol* ` B ) e. RR ) ) -> ( A u. B ) C_ RR ) |
| 9 | ovolcl | |- ( ( A u. B ) C_ RR -> ( vol* ` ( A u. B ) ) e. RR* ) |
|
| 10 | 8 9 | syl | |- ( ( ( A C_ RR /\ ( vol* ` A ) e. RR ) /\ ( B C_ RR /\ ( vol* ` B ) e. RR ) ) -> ( vol* ` ( A u. B ) ) e. RR* ) |
| 11 | readdcl | |- ( ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) -> ( ( vol* ` A ) + ( vol* ` B ) ) e. RR ) |
|
| 12 | 11 | ad2ant2l | |- ( ( ( A C_ RR /\ ( vol* ` A ) e. RR ) /\ ( B C_ RR /\ ( vol* ` B ) e. RR ) ) -> ( ( vol* ` A ) + ( vol* ` B ) ) e. RR ) |
| 13 | xralrple | |- ( ( ( vol* ` ( A u. B ) ) e. RR* /\ ( ( vol* ` A ) + ( vol* ` B ) ) e. RR ) -> ( ( vol* ` ( A u. B ) ) <_ ( ( vol* ` A ) + ( vol* ` B ) ) <-> A. x e. RR+ ( vol* ` ( A u. B ) ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + x ) ) ) |
|
| 14 | 10 12 13 | syl2anc | |- ( ( ( A C_ RR /\ ( vol* ` A ) e. RR ) /\ ( B C_ RR /\ ( vol* ` B ) e. RR ) ) -> ( ( vol* ` ( A u. B ) ) <_ ( ( vol* ` A ) + ( vol* ` B ) ) <-> A. x e. RR+ ( vol* ` ( A u. B ) ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + x ) ) ) |
| 15 | 5 14 | mpbird | |- ( ( ( A C_ RR /\ ( vol* ` A ) e. RR ) /\ ( B C_ RR /\ ( vol* ` B ) e. RR ) ) -> ( vol* ` ( A u. B ) ) <_ ( ( vol* ` A ) + ( vol* ` B ) ) ) |