This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumrev.1 | |- ( ph -> K e. ZZ ) |
|
| fsumrev.2 | |- ( ph -> M e. ZZ ) |
||
| fsumrev.3 | |- ( ph -> N e. ZZ ) |
||
| fsumrev.4 | |- ( ( ph /\ j e. ( M ... N ) ) -> A e. CC ) |
||
| fsumshftm.5 | |- ( j = ( k + K ) -> A = B ) |
||
| Assertion | fsumshftm | |- ( ph -> sum_ j e. ( M ... N ) A = sum_ k e. ( ( M - K ) ... ( N - K ) ) B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumrev.1 | |- ( ph -> K e. ZZ ) |
|
| 2 | fsumrev.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | fsumrev.3 | |- ( ph -> N e. ZZ ) |
|
| 4 | fsumrev.4 | |- ( ( ph /\ j e. ( M ... N ) ) -> A e. CC ) |
|
| 5 | fsumshftm.5 | |- ( j = ( k + K ) -> A = B ) |
|
| 6 | csbeq1a | |- ( j = m -> A = [_ m / j ]_ A ) |
|
| 7 | nfcv | |- F/_ m A |
|
| 8 | nfcsb1v | |- F/_ j [_ m / j ]_ A |
|
| 9 | 6 7 8 | cbvsum | |- sum_ j e. ( M ... N ) A = sum_ m e. ( M ... N ) [_ m / j ]_ A |
| 10 | 1 | znegcld | |- ( ph -> -u K e. ZZ ) |
| 11 | 4 | ralrimiva | |- ( ph -> A. j e. ( M ... N ) A e. CC ) |
| 12 | 8 | nfel1 | |- F/ j [_ m / j ]_ A e. CC |
| 13 | 6 | eleq1d | |- ( j = m -> ( A e. CC <-> [_ m / j ]_ A e. CC ) ) |
| 14 | 12 13 | rspc | |- ( m e. ( M ... N ) -> ( A. j e. ( M ... N ) A e. CC -> [_ m / j ]_ A e. CC ) ) |
| 15 | 11 14 | mpan9 | |- ( ( ph /\ m e. ( M ... N ) ) -> [_ m / j ]_ A e. CC ) |
| 16 | csbeq1 | |- ( m = ( k - -u K ) -> [_ m / j ]_ A = [_ ( k - -u K ) / j ]_ A ) |
|
| 17 | 10 2 3 15 16 | fsumshft | |- ( ph -> sum_ m e. ( M ... N ) [_ m / j ]_ A = sum_ k e. ( ( M + -u K ) ... ( N + -u K ) ) [_ ( k - -u K ) / j ]_ A ) |
| 18 | 2 | zcnd | |- ( ph -> M e. CC ) |
| 19 | 1 | zcnd | |- ( ph -> K e. CC ) |
| 20 | 18 19 | negsubd | |- ( ph -> ( M + -u K ) = ( M - K ) ) |
| 21 | 3 | zcnd | |- ( ph -> N e. CC ) |
| 22 | 21 19 | negsubd | |- ( ph -> ( N + -u K ) = ( N - K ) ) |
| 23 | 20 22 | oveq12d | |- ( ph -> ( ( M + -u K ) ... ( N + -u K ) ) = ( ( M - K ) ... ( N - K ) ) ) |
| 24 | 23 | sumeq1d | |- ( ph -> sum_ k e. ( ( M + -u K ) ... ( N + -u K ) ) [_ ( k - -u K ) / j ]_ A = sum_ k e. ( ( M - K ) ... ( N - K ) ) [_ ( k - -u K ) / j ]_ A ) |
| 25 | elfzelz | |- ( k e. ( ( M - K ) ... ( N - K ) ) -> k e. ZZ ) |
|
| 26 | 25 | zcnd | |- ( k e. ( ( M - K ) ... ( N - K ) ) -> k e. CC ) |
| 27 | subneg | |- ( ( k e. CC /\ K e. CC ) -> ( k - -u K ) = ( k + K ) ) |
|
| 28 | 26 19 27 | syl2anr | |- ( ( ph /\ k e. ( ( M - K ) ... ( N - K ) ) ) -> ( k - -u K ) = ( k + K ) ) |
| 29 | 28 | csbeq1d | |- ( ( ph /\ k e. ( ( M - K ) ... ( N - K ) ) ) -> [_ ( k - -u K ) / j ]_ A = [_ ( k + K ) / j ]_ A ) |
| 30 | ovex | |- ( k + K ) e. _V |
|
| 31 | 30 5 | csbie | |- [_ ( k + K ) / j ]_ A = B |
| 32 | 29 31 | eqtrdi | |- ( ( ph /\ k e. ( ( M - K ) ... ( N - K ) ) ) -> [_ ( k - -u K ) / j ]_ A = B ) |
| 33 | 32 | sumeq2dv | |- ( ph -> sum_ k e. ( ( M - K ) ... ( N - K ) ) [_ ( k - -u K ) / j ]_ A = sum_ k e. ( ( M - K ) ... ( N - K ) ) B ) |
| 34 | 17 24 33 | 3eqtrd | |- ( ph -> sum_ m e. ( M ... N ) [_ m / j ]_ A = sum_ k e. ( ( M - K ) ... ( N - K ) ) B ) |
| 35 | 9 34 | eqtrid | |- ( ph -> sum_ j e. ( M ... N ) A = sum_ k e. ( ( M - K ) ... ( N - K ) ) B ) |