This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure for the interval endpoint function. (Contributed by Mario Carneiro, 16-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolfcl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( ( 1st ` ( F ` N ) ) e. RR /\ ( 2nd ` ( F ` N ) ) e. RR /\ ( 1st ` ( F ` N ) ) <_ ( 2nd ` ( F ` N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( F ` N ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 2 | 1 | elin2d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( F ` N ) e. ( RR X. RR ) ) |
| 3 | 1st2nd2 | |- ( ( F ` N ) e. ( RR X. RR ) -> ( F ` N ) = <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. ) |
|
| 4 | 2 3 | syl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( F ` N ) = <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. ) |
| 5 | 4 1 | eqeltrrd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. e. ( <_ i^i ( RR X. RR ) ) ) |
| 6 | ancom | |- ( ( ( 1st ` ( F ` N ) ) <_ ( 2nd ` ( F ` N ) ) /\ ( ( 1st ` ( F ` N ) ) e. RR /\ ( 2nd ` ( F ` N ) ) e. RR ) ) <-> ( ( ( 1st ` ( F ` N ) ) e. RR /\ ( 2nd ` ( F ` N ) ) e. RR ) /\ ( 1st ` ( F ` N ) ) <_ ( 2nd ` ( F ` N ) ) ) ) |
|
| 7 | elin | |- ( <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. e. ( <_ i^i ( RR X. RR ) ) <-> ( <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. e. <_ /\ <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. e. ( RR X. RR ) ) ) |
|
| 8 | df-br | |- ( ( 1st ` ( F ` N ) ) <_ ( 2nd ` ( F ` N ) ) <-> <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. e. <_ ) |
|
| 9 | 8 | bicomi | |- ( <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. e. <_ <-> ( 1st ` ( F ` N ) ) <_ ( 2nd ` ( F ` N ) ) ) |
| 10 | opelxp | |- ( <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. e. ( RR X. RR ) <-> ( ( 1st ` ( F ` N ) ) e. RR /\ ( 2nd ` ( F ` N ) ) e. RR ) ) |
|
| 11 | 9 10 | anbi12i | |- ( ( <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. e. <_ /\ <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. e. ( RR X. RR ) ) <-> ( ( 1st ` ( F ` N ) ) <_ ( 2nd ` ( F ` N ) ) /\ ( ( 1st ` ( F ` N ) ) e. RR /\ ( 2nd ` ( F ` N ) ) e. RR ) ) ) |
| 12 | 7 11 | bitri | |- ( <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. e. ( <_ i^i ( RR X. RR ) ) <-> ( ( 1st ` ( F ` N ) ) <_ ( 2nd ` ( F ` N ) ) /\ ( ( 1st ` ( F ` N ) ) e. RR /\ ( 2nd ` ( F ` N ) ) e. RR ) ) ) |
| 13 | df-3an | |- ( ( ( 1st ` ( F ` N ) ) e. RR /\ ( 2nd ` ( F ` N ) ) e. RR /\ ( 1st ` ( F ` N ) ) <_ ( 2nd ` ( F ` N ) ) ) <-> ( ( ( 1st ` ( F ` N ) ) e. RR /\ ( 2nd ` ( F ` N ) ) e. RR ) /\ ( 1st ` ( F ` N ) ) <_ ( 2nd ` ( F ` N ) ) ) ) |
|
| 14 | 6 12 13 | 3bitr4i | |- ( <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. e. ( <_ i^i ( RR X. RR ) ) <-> ( ( 1st ` ( F ` N ) ) e. RR /\ ( 2nd ` ( F ` N ) ) e. RR /\ ( 1st ` ( F ` N ) ) <_ ( 2nd ` ( F ` N ) ) ) ) |
| 15 | 5 14 | sylib | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( ( 1st ` ( F ` N ) ) e. RR /\ ( 2nd ` ( F ` N ) ) e. RR /\ ( 1st ` ( F ` N ) ) <_ ( 2nd ` ( F ` N ) ) ) ) |