This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pncan | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 2 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 3 | 1 2 | addcomd | |- ( ( A e. CC /\ B e. CC ) -> ( B + A ) = ( A + B ) ) |
| 4 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 5 | subadd | |- ( ( ( A + B ) e. CC /\ B e. CC /\ A e. CC ) -> ( ( ( A + B ) - B ) = A <-> ( B + A ) = ( A + B ) ) ) |
|
| 6 | 4 1 2 5 | syl3anc | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) - B ) = A <-> ( B + A ) = ( A + B ) ) ) |
| 7 | 3 6 | mpbird | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - B ) = A ) |