This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition commutes. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcom | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1cnd | |- ( ( A e. CC /\ B e. CC ) -> 1 e. CC ) |
|
| 2 | 1 1 | addcld | |- ( ( A e. CC /\ B e. CC ) -> ( 1 + 1 ) e. CC ) |
| 3 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 4 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 5 | 2 3 4 | adddid | |- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + 1 ) x. ( A + B ) ) = ( ( ( 1 + 1 ) x. A ) + ( ( 1 + 1 ) x. B ) ) ) |
| 6 | 3 4 | addcld | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
| 7 | 1p1times | |- ( ( A + B ) e. CC -> ( ( 1 + 1 ) x. ( A + B ) ) = ( ( A + B ) + ( A + B ) ) ) |
|
| 8 | 6 7 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + 1 ) x. ( A + B ) ) = ( ( A + B ) + ( A + B ) ) ) |
| 9 | 1p1times | |- ( A e. CC -> ( ( 1 + 1 ) x. A ) = ( A + A ) ) |
|
| 10 | 1p1times | |- ( B e. CC -> ( ( 1 + 1 ) x. B ) = ( B + B ) ) |
|
| 11 | 9 10 | oveqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( 1 + 1 ) x. A ) + ( ( 1 + 1 ) x. B ) ) = ( ( A + A ) + ( B + B ) ) ) |
| 12 | 5 8 11 | 3eqtr3rd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + A ) + ( B + B ) ) = ( ( A + B ) + ( A + B ) ) ) |
| 13 | 3 3 | addcld | |- ( ( A e. CC /\ B e. CC ) -> ( A + A ) e. CC ) |
| 14 | 13 4 4 | addassd | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + A ) + B ) + B ) = ( ( A + A ) + ( B + B ) ) ) |
| 15 | 6 3 4 | addassd | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) + A ) + B ) = ( ( A + B ) + ( A + B ) ) ) |
| 16 | 12 14 15 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + A ) + B ) + B ) = ( ( ( A + B ) + A ) + B ) ) |
| 17 | 13 4 | addcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + A ) + B ) e. CC ) |
| 18 | 6 3 | addcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + A ) e. CC ) |
| 19 | addcan2 | |- ( ( ( ( A + A ) + B ) e. CC /\ ( ( A + B ) + A ) e. CC /\ B e. CC ) -> ( ( ( ( A + A ) + B ) + B ) = ( ( ( A + B ) + A ) + B ) <-> ( ( A + A ) + B ) = ( ( A + B ) + A ) ) ) |
|
| 20 | 17 18 4 19 | syl3anc | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A + A ) + B ) + B ) = ( ( ( A + B ) + A ) + B ) <-> ( ( A + A ) + B ) = ( ( A + B ) + A ) ) ) |
| 21 | 16 20 | mpbid | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + A ) + B ) = ( ( A + B ) + A ) ) |
| 22 | 3 3 4 | addassd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + A ) + B ) = ( A + ( A + B ) ) ) |
| 23 | 3 4 3 | addassd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + A ) = ( A + ( B + A ) ) ) |
| 24 | 21 22 23 | 3eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( A + ( A + B ) ) = ( A + ( B + A ) ) ) |
| 25 | 4 3 | addcld | |- ( ( A e. CC /\ B e. CC ) -> ( B + A ) e. CC ) |
| 26 | addcan | |- ( ( A e. CC /\ ( A + B ) e. CC /\ ( B + A ) e. CC ) -> ( ( A + ( A + B ) ) = ( A + ( B + A ) ) <-> ( A + B ) = ( B + A ) ) ) |
|
| 27 | 3 6 25 26 | syl3anc | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + ( A + B ) ) = ( A + ( B + A ) ) <-> ( A + B ) = ( B + A ) ) ) |
| 28 | 24 27 | mpbid | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |