This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A disjoint union of open intervals is measurable. (This proof does not use countable choice, unlike iunmbl .) Lemma 565Ca of Fremlin5 p. 214. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
||
| uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| Assertion | uniioombl | |- ( ph -> U. ran ( (,) o. F ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 2 | uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
|
| 3 | uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 4 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 5 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 6 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 7 | 5 6 | sstri | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 8 | fss | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) |
|
| 9 | 1 7 8 | sylancl | |- ( ph -> F : NN --> ( RR* X. RR* ) ) |
| 10 | fco | |- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
|
| 11 | 4 9 10 | sylancr | |- ( ph -> ( (,) o. F ) : NN --> ~P RR ) |
| 12 | 11 | frnd | |- ( ph -> ran ( (,) o. F ) C_ ~P RR ) |
| 13 | sspwuni | |- ( ran ( (,) o. F ) C_ ~P RR <-> U. ran ( (,) o. F ) C_ RR ) |
|
| 14 | 12 13 | sylib | |- ( ph -> U. ran ( (,) o. F ) C_ RR ) |
| 15 | elpwi | |- ( z e. ~P RR -> z C_ RR ) |
|
| 16 | 15 | ad2antrl | |- ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> z C_ RR ) |
| 17 | simprr | |- ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( vol* ` z ) e. RR ) |
|
| 18 | rphalfcl | |- ( r e. RR+ -> ( r / 2 ) e. RR+ ) |
|
| 19 | 18 | rphalfcld | |- ( r e. RR+ -> ( ( r / 2 ) / 2 ) e. RR+ ) |
| 20 | eqid | |- seq 1 ( + , ( ( abs o. - ) o. f ) ) = seq 1 ( + , ( ( abs o. - ) o. f ) ) |
|
| 21 | 20 | ovolgelb | |- ( ( z C_ RR /\ ( vol* ` z ) e. RR /\ ( ( r / 2 ) / 2 ) e. RR+ ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) |
| 22 | 16 17 19 21 | syl2an3an | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) |
| 23 | 1 | ad3antrrr | |- ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 24 | 2 | ad3antrrr | |- ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
| 25 | eqid | |- U. ran ( (,) o. F ) = U. ran ( (,) o. F ) |
|
| 26 | 17 | adantr | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( vol* ` z ) e. RR ) |
| 27 | 26 | adantr | |- ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> ( vol* ` z ) e. RR ) |
| 28 | 18 | adantl | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( r / 2 ) e. RR+ ) |
| 29 | 28 | adantr | |- ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> ( r / 2 ) e. RR+ ) |
| 30 | 29 | rphalfcld | |- ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> ( ( r / 2 ) / 2 ) e. RR+ ) |
| 31 | elmapi | |- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 32 | 31 | ad2antrl | |- ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 33 | simprrl | |- ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> z C_ U. ran ( (,) o. f ) ) |
|
| 34 | simprrr | |- ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) |
|
| 35 | 23 24 3 25 27 30 32 33 20 34 | uniioombllem6 | |- ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( ( vol* ` z ) + ( 4 x. ( ( r / 2 ) / 2 ) ) ) ) |
| 36 | 22 35 | rexlimddv | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( ( vol* ` z ) + ( 4 x. ( ( r / 2 ) / 2 ) ) ) ) |
| 37 | rpcn | |- ( r e. RR+ -> r e. CC ) |
|
| 38 | 37 | adantl | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> r e. CC ) |
| 39 | 2cnd | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> 2 e. CC ) |
|
| 40 | 2ne0 | |- 2 =/= 0 |
|
| 41 | 40 | a1i | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> 2 =/= 0 ) |
| 42 | 38 39 39 41 41 | divdiv1d | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( ( r / 2 ) / 2 ) = ( r / ( 2 x. 2 ) ) ) |
| 43 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 44 | 43 | oveq2i | |- ( r / ( 2 x. 2 ) ) = ( r / 4 ) |
| 45 | 42 44 | eqtrdi | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( ( r / 2 ) / 2 ) = ( r / 4 ) ) |
| 46 | 45 | oveq2d | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( 4 x. ( ( r / 2 ) / 2 ) ) = ( 4 x. ( r / 4 ) ) ) |
| 47 | 4cn | |- 4 e. CC |
|
| 48 | 47 | a1i | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> 4 e. CC ) |
| 49 | 4ne0 | |- 4 =/= 0 |
|
| 50 | 49 | a1i | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> 4 =/= 0 ) |
| 51 | 38 48 50 | divcan2d | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( 4 x. ( r / 4 ) ) = r ) |
| 52 | 46 51 | eqtrd | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( 4 x. ( ( r / 2 ) / 2 ) ) = r ) |
| 53 | 52 | oveq2d | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( ( vol* ` z ) + ( 4 x. ( ( r / 2 ) / 2 ) ) ) = ( ( vol* ` z ) + r ) ) |
| 54 | 36 53 | breqtrd | |- ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( ( vol* ` z ) + r ) ) |
| 55 | 54 | ralrimiva | |- ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> A. r e. RR+ ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( ( vol* ` z ) + r ) ) |
| 56 | inss1 | |- ( z i^i U. ran ( (,) o. F ) ) C_ z |
|
| 57 | 56 | a1i | |- ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( z i^i U. ran ( (,) o. F ) ) C_ z ) |
| 58 | ovolsscl | |- ( ( ( z i^i U. ran ( (,) o. F ) ) C_ z /\ z C_ RR /\ ( vol* ` z ) e. RR ) -> ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) e. RR ) |
|
| 59 | 57 16 17 58 | syl3anc | |- ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) e. RR ) |
| 60 | difssd | |- ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( z \ U. ran ( (,) o. F ) ) C_ z ) |
|
| 61 | ovolsscl | |- ( ( ( z \ U. ran ( (,) o. F ) ) C_ z /\ z C_ RR /\ ( vol* ` z ) e. RR ) -> ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) e. RR ) |
|
| 62 | 60 16 17 61 | syl3anc | |- ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) e. RR ) |
| 63 | 59 62 | readdcld | |- ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) e. RR ) |
| 64 | alrple | |- ( ( ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) e. RR /\ ( vol* ` z ) e. RR ) -> ( ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( vol* ` z ) <-> A. r e. RR+ ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( ( vol* ` z ) + r ) ) ) |
|
| 65 | 63 17 64 | syl2anc | |- ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( vol* ` z ) <-> A. r e. RR+ ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( ( vol* ` z ) + r ) ) ) |
| 66 | 55 65 | mpbird | |- ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( vol* ` z ) ) |
| 67 | 66 | expr | |- ( ( ph /\ z e. ~P RR ) -> ( ( vol* ` z ) e. RR -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( vol* ` z ) ) ) |
| 68 | 67 | ralrimiva | |- ( ph -> A. z e. ~P RR ( ( vol* ` z ) e. RR -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( vol* ` z ) ) ) |
| 69 | ismbl2 | |- ( U. ran ( (,) o. F ) e. dom vol <-> ( U. ran ( (,) o. F ) C_ RR /\ A. z e. ~P RR ( ( vol* ` z ) e. RR -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( vol* ` z ) ) ) ) |
|
| 70 | 14 68 69 | sylanbrc | |- ( ph -> U. ran ( (,) o. F ) e. dom vol ) |