This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set is contained in another of bounded measure, it too is bounded. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolsscl | |- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) e. RR ) -> ( vol* ` A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr | |- ( ( A C_ B /\ B C_ RR ) -> A C_ RR ) |
|
| 2 | 1 | 3adant3 | |- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) e. RR ) -> A C_ RR ) |
| 3 | simp3 | |- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) e. RR ) -> ( vol* ` B ) e. RR ) |
|
| 4 | ovolss | |- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
|
| 5 | 4 | 3adant3 | |- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) e. RR ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
| 6 | ovollecl | |- ( ( A C_ RR /\ ( vol* ` B ) e. RR /\ ( vol* ` A ) <_ ( vol* ` B ) ) -> ( vol* ` A ) e. RR ) |
|
| 7 | 2 3 5 6 | syl3anc | |- ( ( A C_ B /\ B C_ RR /\ ( vol* ` B ) e. RR ) -> ( vol* ` A ) e. RR ) |