This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013) (Revised by Mario Carneiro, 22-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumsplit.1 | |- ( ph -> ( A i^i B ) = (/) ) |
|
| fsumsplit.2 | |- ( ph -> U = ( A u. B ) ) |
||
| fsumsplit.3 | |- ( ph -> U e. Fin ) |
||
| fsumsplit.4 | |- ( ( ph /\ k e. U ) -> C e. CC ) |
||
| Assertion | fsumsplit | |- ( ph -> sum_ k e. U C = ( sum_ k e. A C + sum_ k e. B C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumsplit.1 | |- ( ph -> ( A i^i B ) = (/) ) |
|
| 2 | fsumsplit.2 | |- ( ph -> U = ( A u. B ) ) |
|
| 3 | fsumsplit.3 | |- ( ph -> U e. Fin ) |
|
| 4 | fsumsplit.4 | |- ( ( ph /\ k e. U ) -> C e. CC ) |
|
| 5 | ssun1 | |- A C_ ( A u. B ) |
|
| 6 | 5 2 | sseqtrrid | |- ( ph -> A C_ U ) |
| 7 | 6 | sselda | |- ( ( ph /\ k e. A ) -> k e. U ) |
| 8 | 7 4 | syldan | |- ( ( ph /\ k e. A ) -> C e. CC ) |
| 9 | 8 | ralrimiva | |- ( ph -> A. k e. A C e. CC ) |
| 10 | 3 | olcd | |- ( ph -> ( U C_ ( ZZ>= ` 0 ) \/ U e. Fin ) ) |
| 11 | sumss2 | |- ( ( ( A C_ U /\ A. k e. A C e. CC ) /\ ( U C_ ( ZZ>= ` 0 ) \/ U e. Fin ) ) -> sum_ k e. A C = sum_ k e. U if ( k e. A , C , 0 ) ) |
|
| 12 | 6 9 10 11 | syl21anc | |- ( ph -> sum_ k e. A C = sum_ k e. U if ( k e. A , C , 0 ) ) |
| 13 | ssun2 | |- B C_ ( A u. B ) |
|
| 14 | 13 2 | sseqtrrid | |- ( ph -> B C_ U ) |
| 15 | 14 | sselda | |- ( ( ph /\ k e. B ) -> k e. U ) |
| 16 | 15 4 | syldan | |- ( ( ph /\ k e. B ) -> C e. CC ) |
| 17 | 16 | ralrimiva | |- ( ph -> A. k e. B C e. CC ) |
| 18 | sumss2 | |- ( ( ( B C_ U /\ A. k e. B C e. CC ) /\ ( U C_ ( ZZ>= ` 0 ) \/ U e. Fin ) ) -> sum_ k e. B C = sum_ k e. U if ( k e. B , C , 0 ) ) |
|
| 19 | 14 17 10 18 | syl21anc | |- ( ph -> sum_ k e. B C = sum_ k e. U if ( k e. B , C , 0 ) ) |
| 20 | 12 19 | oveq12d | |- ( ph -> ( sum_ k e. A C + sum_ k e. B C ) = ( sum_ k e. U if ( k e. A , C , 0 ) + sum_ k e. U if ( k e. B , C , 0 ) ) ) |
| 21 | 0cn | |- 0 e. CC |
|
| 22 | ifcl | |- ( ( C e. CC /\ 0 e. CC ) -> if ( k e. A , C , 0 ) e. CC ) |
|
| 23 | 4 21 22 | sylancl | |- ( ( ph /\ k e. U ) -> if ( k e. A , C , 0 ) e. CC ) |
| 24 | ifcl | |- ( ( C e. CC /\ 0 e. CC ) -> if ( k e. B , C , 0 ) e. CC ) |
|
| 25 | 4 21 24 | sylancl | |- ( ( ph /\ k e. U ) -> if ( k e. B , C , 0 ) e. CC ) |
| 26 | 3 23 25 | fsumadd | |- ( ph -> sum_ k e. U ( if ( k e. A , C , 0 ) + if ( k e. B , C , 0 ) ) = ( sum_ k e. U if ( k e. A , C , 0 ) + sum_ k e. U if ( k e. B , C , 0 ) ) ) |
| 27 | 2 | eleq2d | |- ( ph -> ( k e. U <-> k e. ( A u. B ) ) ) |
| 28 | elun | |- ( k e. ( A u. B ) <-> ( k e. A \/ k e. B ) ) |
|
| 29 | 27 28 | bitrdi | |- ( ph -> ( k e. U <-> ( k e. A \/ k e. B ) ) ) |
| 30 | 29 | biimpa | |- ( ( ph /\ k e. U ) -> ( k e. A \/ k e. B ) ) |
| 31 | iftrue | |- ( k e. A -> if ( k e. A , C , 0 ) = C ) |
|
| 32 | 31 | adantl | |- ( ( ph /\ k e. A ) -> if ( k e. A , C , 0 ) = C ) |
| 33 | noel | |- -. k e. (/) |
|
| 34 | 1 | eleq2d | |- ( ph -> ( k e. ( A i^i B ) <-> k e. (/) ) ) |
| 35 | elin | |- ( k e. ( A i^i B ) <-> ( k e. A /\ k e. B ) ) |
|
| 36 | 34 35 | bitr3di | |- ( ph -> ( k e. (/) <-> ( k e. A /\ k e. B ) ) ) |
| 37 | 33 36 | mtbii | |- ( ph -> -. ( k e. A /\ k e. B ) ) |
| 38 | imnan | |- ( ( k e. A -> -. k e. B ) <-> -. ( k e. A /\ k e. B ) ) |
|
| 39 | 37 38 | sylibr | |- ( ph -> ( k e. A -> -. k e. B ) ) |
| 40 | 39 | imp | |- ( ( ph /\ k e. A ) -> -. k e. B ) |
| 41 | 40 | iffalsed | |- ( ( ph /\ k e. A ) -> if ( k e. B , C , 0 ) = 0 ) |
| 42 | 32 41 | oveq12d | |- ( ( ph /\ k e. A ) -> ( if ( k e. A , C , 0 ) + if ( k e. B , C , 0 ) ) = ( C + 0 ) ) |
| 43 | 8 | addridd | |- ( ( ph /\ k e. A ) -> ( C + 0 ) = C ) |
| 44 | 42 43 | eqtrd | |- ( ( ph /\ k e. A ) -> ( if ( k e. A , C , 0 ) + if ( k e. B , C , 0 ) ) = C ) |
| 45 | 39 | con2d | |- ( ph -> ( k e. B -> -. k e. A ) ) |
| 46 | 45 | imp | |- ( ( ph /\ k e. B ) -> -. k e. A ) |
| 47 | 46 | iffalsed | |- ( ( ph /\ k e. B ) -> if ( k e. A , C , 0 ) = 0 ) |
| 48 | iftrue | |- ( k e. B -> if ( k e. B , C , 0 ) = C ) |
|
| 49 | 48 | adantl | |- ( ( ph /\ k e. B ) -> if ( k e. B , C , 0 ) = C ) |
| 50 | 47 49 | oveq12d | |- ( ( ph /\ k e. B ) -> ( if ( k e. A , C , 0 ) + if ( k e. B , C , 0 ) ) = ( 0 + C ) ) |
| 51 | 16 | addlidd | |- ( ( ph /\ k e. B ) -> ( 0 + C ) = C ) |
| 52 | 50 51 | eqtrd | |- ( ( ph /\ k e. B ) -> ( if ( k e. A , C , 0 ) + if ( k e. B , C , 0 ) ) = C ) |
| 53 | 44 52 | jaodan | |- ( ( ph /\ ( k e. A \/ k e. B ) ) -> ( if ( k e. A , C , 0 ) + if ( k e. B , C , 0 ) ) = C ) |
| 54 | 30 53 | syldan | |- ( ( ph /\ k e. U ) -> ( if ( k e. A , C , 0 ) + if ( k e. B , C , 0 ) ) = C ) |
| 55 | 54 | sumeq2dv | |- ( ph -> sum_ k e. U ( if ( k e. A , C , 0 ) + if ( k e. B , C , 0 ) ) = sum_ k e. U C ) |
| 56 | 20 26 55 | 3eqtr2rd | |- ( ph -> sum_ k e. U C = ( sum_ k e. A C + sum_ k e. B C ) ) |