This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sumeq1d

Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005)

Ref Expression
Hypothesis sumeq1d.1
|- ( ph -> A = B )
Assertion sumeq1d
|- ( ph -> sum_ k e. A C = sum_ k e. B C )

Proof

Step Hyp Ref Expression
1 sumeq1d.1
 |-  ( ph -> A = B )
2 sumeq1
 |-  ( A = B -> sum_ k e. A C = sum_ k e. B C )
3 1 2 syl
 |-  ( ph -> sum_ k e. A C = sum_ k e. B C )