This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any (closed) interval covering is a subset of the reals. (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolficcss | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. F ) C_ RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnco2 | |- ran ( [,] o. F ) = ( [,] " ran F ) |
|
| 2 | ffvelcdm | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( F ` y ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 3 | 2 | elin2d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( F ` y ) e. ( RR X. RR ) ) |
| 4 | 1st2nd2 | |- ( ( F ` y ) e. ( RR X. RR ) -> ( F ` y ) = <. ( 1st ` ( F ` y ) ) , ( 2nd ` ( F ` y ) ) >. ) |
|
| 5 | 3 4 | syl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( F ` y ) = <. ( 1st ` ( F ` y ) ) , ( 2nd ` ( F ` y ) ) >. ) |
| 6 | 5 | fveq2d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( [,] ` ( F ` y ) ) = ( [,] ` <. ( 1st ` ( F ` y ) ) , ( 2nd ` ( F ` y ) ) >. ) ) |
| 7 | df-ov | |- ( ( 1st ` ( F ` y ) ) [,] ( 2nd ` ( F ` y ) ) ) = ( [,] ` <. ( 1st ` ( F ` y ) ) , ( 2nd ` ( F ` y ) ) >. ) |
|
| 8 | 6 7 | eqtr4di | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( [,] ` ( F ` y ) ) = ( ( 1st ` ( F ` y ) ) [,] ( 2nd ` ( F ` y ) ) ) ) |
| 9 | xp1st | |- ( ( F ` y ) e. ( RR X. RR ) -> ( 1st ` ( F ` y ) ) e. RR ) |
|
| 10 | 3 9 | syl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( 1st ` ( F ` y ) ) e. RR ) |
| 11 | xp2nd | |- ( ( F ` y ) e. ( RR X. RR ) -> ( 2nd ` ( F ` y ) ) e. RR ) |
|
| 12 | 3 11 | syl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( 2nd ` ( F ` y ) ) e. RR ) |
| 13 | iccssre | |- ( ( ( 1st ` ( F ` y ) ) e. RR /\ ( 2nd ` ( F ` y ) ) e. RR ) -> ( ( 1st ` ( F ` y ) ) [,] ( 2nd ` ( F ` y ) ) ) C_ RR ) |
|
| 14 | 10 12 13 | syl2anc | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( ( 1st ` ( F ` y ) ) [,] ( 2nd ` ( F ` y ) ) ) C_ RR ) |
| 15 | 8 14 | eqsstrd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( [,] ` ( F ` y ) ) C_ RR ) |
| 16 | reex | |- RR e. _V |
|
| 17 | 16 | elpw2 | |- ( ( [,] ` ( F ` y ) ) e. ~P RR <-> ( [,] ` ( F ` y ) ) C_ RR ) |
| 18 | 15 17 | sylibr | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ y e. NN ) -> ( [,] ` ( F ` y ) ) e. ~P RR ) |
| 19 | 18 | ralrimiva | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> A. y e. NN ( [,] ` ( F ` y ) ) e. ~P RR ) |
| 20 | ffn | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> F Fn NN ) |
|
| 21 | fveq2 | |- ( x = ( F ` y ) -> ( [,] ` x ) = ( [,] ` ( F ` y ) ) ) |
|
| 22 | 21 | eleq1d | |- ( x = ( F ` y ) -> ( ( [,] ` x ) e. ~P RR <-> ( [,] ` ( F ` y ) ) e. ~P RR ) ) |
| 23 | 22 | ralrn | |- ( F Fn NN -> ( A. x e. ran F ( [,] ` x ) e. ~P RR <-> A. y e. NN ( [,] ` ( F ` y ) ) e. ~P RR ) ) |
| 24 | 20 23 | syl | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( A. x e. ran F ( [,] ` x ) e. ~P RR <-> A. y e. NN ( [,] ` ( F ` y ) ) e. ~P RR ) ) |
| 25 | 19 24 | mpbird | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> A. x e. ran F ( [,] ` x ) e. ~P RR ) |
| 26 | iccf | |- [,] : ( RR* X. RR* ) --> ~P RR* |
|
| 27 | ffun | |- ( [,] : ( RR* X. RR* ) --> ~P RR* -> Fun [,] ) |
|
| 28 | 26 27 | ax-mp | |- Fun [,] |
| 29 | frn | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ran F C_ ( <_ i^i ( RR X. RR ) ) ) |
|
| 30 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 31 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 32 | 30 31 | sstri | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 33 | 26 | fdmi | |- dom [,] = ( RR* X. RR* ) |
| 34 | 32 33 | sseqtrri | |- ( <_ i^i ( RR X. RR ) ) C_ dom [,] |
| 35 | 29 34 | sstrdi | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ran F C_ dom [,] ) |
| 36 | funimass4 | |- ( ( Fun [,] /\ ran F C_ dom [,] ) -> ( ( [,] " ran F ) C_ ~P RR <-> A. x e. ran F ( [,] ` x ) e. ~P RR ) ) |
|
| 37 | 28 35 36 | sylancr | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( [,] " ran F ) C_ ~P RR <-> A. x e. ran F ( [,] ` x ) e. ~P RR ) ) |
| 38 | 25 37 | mpbird | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( [,] " ran F ) C_ ~P RR ) |
| 39 | 1 38 | eqsstrid | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ran ( [,] o. F ) C_ ~P RR ) |
| 40 | sspwuni | |- ( ran ( [,] o. F ) C_ ~P RR <-> U. ran ( [,] o. F ) C_ RR ) |
|
| 41 | 39 40 | sylib | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. F ) C_ RR ) |