This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express an upper integer set as the disjoint (see uzdisj ) union of the first N values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzsplit | |- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` M ) = ( ( M ... ( N - 1 ) ) u. ( ZZ>= ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre | |- ( N e. ( ZZ>= ` M ) -> N e. RR ) |
|
| 2 | eluzelre | |- ( k e. ( ZZ>= ` M ) -> k e. RR ) |
|
| 3 | lelttric | |- ( ( N e. RR /\ k e. RR ) -> ( N <_ k \/ k < N ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( N e. ( ZZ>= ` M ) /\ k e. ( ZZ>= ` M ) ) -> ( N <_ k \/ k < N ) ) |
| 5 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 6 | eluzelz | |- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
|
| 7 | eluz | |- ( ( N e. ZZ /\ k e. ZZ ) -> ( k e. ( ZZ>= ` N ) <-> N <_ k ) ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( N e. ( ZZ>= ` M ) /\ k e. ( ZZ>= ` M ) ) -> ( k e. ( ZZ>= ` N ) <-> N <_ k ) ) |
| 9 | eluzle | |- ( k e. ( ZZ>= ` M ) -> M <_ k ) |
|
| 10 | 6 9 | jca | |- ( k e. ( ZZ>= ` M ) -> ( k e. ZZ /\ M <_ k ) ) |
| 11 | 10 | adantl | |- ( ( N e. ( ZZ>= ` M ) /\ k e. ( ZZ>= ` M ) ) -> ( k e. ZZ /\ M <_ k ) ) |
| 12 | eluzel2 | |- ( k e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 13 | elfzm11 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( k e. ( M ... ( N - 1 ) ) <-> ( k e. ZZ /\ M <_ k /\ k < N ) ) ) |
|
| 14 | df-3an | |- ( ( k e. ZZ /\ M <_ k /\ k < N ) <-> ( ( k e. ZZ /\ M <_ k ) /\ k < N ) ) |
|
| 15 | 13 14 | bitrdi | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( k e. ( M ... ( N - 1 ) ) <-> ( ( k e. ZZ /\ M <_ k ) /\ k < N ) ) ) |
| 16 | 12 5 15 | syl2anr | |- ( ( N e. ( ZZ>= ` M ) /\ k e. ( ZZ>= ` M ) ) -> ( k e. ( M ... ( N - 1 ) ) <-> ( ( k e. ZZ /\ M <_ k ) /\ k < N ) ) ) |
| 17 | 11 16 | mpbirand | |- ( ( N e. ( ZZ>= ` M ) /\ k e. ( ZZ>= ` M ) ) -> ( k e. ( M ... ( N - 1 ) ) <-> k < N ) ) |
| 18 | 8 17 | orbi12d | |- ( ( N e. ( ZZ>= ` M ) /\ k e. ( ZZ>= ` M ) ) -> ( ( k e. ( ZZ>= ` N ) \/ k e. ( M ... ( N - 1 ) ) ) <-> ( N <_ k \/ k < N ) ) ) |
| 19 | 4 18 | mpbird | |- ( ( N e. ( ZZ>= ` M ) /\ k e. ( ZZ>= ` M ) ) -> ( k e. ( ZZ>= ` N ) \/ k e. ( M ... ( N - 1 ) ) ) ) |
| 20 | 19 | orcomd | |- ( ( N e. ( ZZ>= ` M ) /\ k e. ( ZZ>= ` M ) ) -> ( k e. ( M ... ( N - 1 ) ) \/ k e. ( ZZ>= ` N ) ) ) |
| 21 | 20 | ex | |- ( N e. ( ZZ>= ` M ) -> ( k e. ( ZZ>= ` M ) -> ( k e. ( M ... ( N - 1 ) ) \/ k e. ( ZZ>= ` N ) ) ) ) |
| 22 | elfzuz | |- ( k e. ( M ... ( N - 1 ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 23 | 22 | a1i | |- ( N e. ( ZZ>= ` M ) -> ( k e. ( M ... ( N - 1 ) ) -> k e. ( ZZ>= ` M ) ) ) |
| 24 | uztrn | |- ( ( k e. ( ZZ>= ` N ) /\ N e. ( ZZ>= ` M ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 25 | 24 | expcom | |- ( N e. ( ZZ>= ` M ) -> ( k e. ( ZZ>= ` N ) -> k e. ( ZZ>= ` M ) ) ) |
| 26 | 23 25 | jaod | |- ( N e. ( ZZ>= ` M ) -> ( ( k e. ( M ... ( N - 1 ) ) \/ k e. ( ZZ>= ` N ) ) -> k e. ( ZZ>= ` M ) ) ) |
| 27 | 21 26 | impbid | |- ( N e. ( ZZ>= ` M ) -> ( k e. ( ZZ>= ` M ) <-> ( k e. ( M ... ( N - 1 ) ) \/ k e. ( ZZ>= ` N ) ) ) ) |
| 28 | elun | |- ( k e. ( ( M ... ( N - 1 ) ) u. ( ZZ>= ` N ) ) <-> ( k e. ( M ... ( N - 1 ) ) \/ k e. ( ZZ>= ` N ) ) ) |
|
| 29 | 27 28 | bitr4di | |- ( N e. ( ZZ>= ` M ) -> ( k e. ( ZZ>= ` M ) <-> k e. ( ( M ... ( N - 1 ) ) u. ( ZZ>= ` N ) ) ) ) |
| 30 | 29 | eqrdv | |- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` M ) = ( ( M ... ( N - 1 ) ) u. ( ZZ>= ` N ) ) ) |