This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzdisj | |- ( K < M -> ( ( J ... K ) i^i ( M ... N ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( x e. ( ( J ... K ) i^i ( M ... N ) ) <-> ( x e. ( J ... K ) /\ x e. ( M ... N ) ) ) |
|
| 2 | elfzel1 | |- ( x e. ( M ... N ) -> M e. ZZ ) |
|
| 3 | 2 | adantl | |- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> M e. ZZ ) |
| 4 | 3 | zred | |- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> M e. RR ) |
| 5 | elfzel2 | |- ( x e. ( J ... K ) -> K e. ZZ ) |
|
| 6 | 5 | adantr | |- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> K e. ZZ ) |
| 7 | 6 | zred | |- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> K e. RR ) |
| 8 | elfzelz | |- ( x e. ( M ... N ) -> x e. ZZ ) |
|
| 9 | 8 | zred | |- ( x e. ( M ... N ) -> x e. RR ) |
| 10 | 9 | adantl | |- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> x e. RR ) |
| 11 | elfzle1 | |- ( x e. ( M ... N ) -> M <_ x ) |
|
| 12 | 11 | adantl | |- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> M <_ x ) |
| 13 | elfzle2 | |- ( x e. ( J ... K ) -> x <_ K ) |
|
| 14 | 13 | adantr | |- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> x <_ K ) |
| 15 | 4 10 7 12 14 | letrd | |- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> M <_ K ) |
| 16 | 4 7 15 | lensymd | |- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> -. K < M ) |
| 17 | 1 16 | sylbi | |- ( x e. ( ( J ... K ) i^i ( M ... N ) ) -> -. K < M ) |
| 18 | 17 | con2i | |- ( K < M -> -. x e. ( ( J ... K ) i^i ( M ... N ) ) ) |
| 19 | 18 | eq0rdv | |- ( K < M -> ( ( J ... K ) i^i ( M ... N ) ) = (/) ) |