This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by SN, 7-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluzsub | |- ( ( M e. ZZ /\ K e. ZZ /\ N e. ( ZZ>= ` ( M + K ) ) ) -> ( N - K ) e. ( ZZ>= ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( M e. ZZ /\ K e. ZZ /\ N e. ( ZZ>= ` ( M + K ) ) ) -> M e. ZZ ) |
|
| 2 | eluzelz | |- ( N e. ( ZZ>= ` ( M + K ) ) -> N e. ZZ ) |
|
| 3 | 2 | 3ad2ant3 | |- ( ( M e. ZZ /\ K e. ZZ /\ N e. ( ZZ>= ` ( M + K ) ) ) -> N e. ZZ ) |
| 4 | simp2 | |- ( ( M e. ZZ /\ K e. ZZ /\ N e. ( ZZ>= ` ( M + K ) ) ) -> K e. ZZ ) |
|
| 5 | 3 4 | zsubcld | |- ( ( M e. ZZ /\ K e. ZZ /\ N e. ( ZZ>= ` ( M + K ) ) ) -> ( N - K ) e. ZZ ) |
| 6 | eluzle | |- ( N e. ( ZZ>= ` ( M + K ) ) -> ( M + K ) <_ N ) |
|
| 7 | 6 | 3ad2ant3 | |- ( ( M e. ZZ /\ K e. ZZ /\ N e. ( ZZ>= ` ( M + K ) ) ) -> ( M + K ) <_ N ) |
| 8 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 9 | zre | |- ( K e. ZZ -> K e. RR ) |
|
| 10 | eluzelre | |- ( N e. ( ZZ>= ` ( M + K ) ) -> N e. RR ) |
|
| 11 | leaddsub | |- ( ( M e. RR /\ K e. RR /\ N e. RR ) -> ( ( M + K ) <_ N <-> M <_ ( N - K ) ) ) |
|
| 12 | 8 9 10 11 | syl3an | |- ( ( M e. ZZ /\ K e. ZZ /\ N e. ( ZZ>= ` ( M + K ) ) ) -> ( ( M + K ) <_ N <-> M <_ ( N - K ) ) ) |
| 13 | 7 12 | mpbid | |- ( ( M e. ZZ /\ K e. ZZ /\ N e. ( ZZ>= ` ( M + K ) ) ) -> M <_ ( N - K ) ) |
| 14 | eluz2 | |- ( ( N - K ) e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ ( N - K ) e. ZZ /\ M <_ ( N - K ) ) ) |
|
| 15 | 1 5 13 14 | syl3anbrc | |- ( ( M e. ZZ /\ K e. ZZ /\ N e. ( ZZ>= ` ( M + K ) ) ) -> ( N - K ) e. ( ZZ>= ` M ) ) |