This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 16-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval | |- ( ( x e. RR* /\ y e. RR* ) -> ( x (,) y ) = { z e. RR* | ( x < z /\ z < y ) } ) |
|
| 2 | ioossre | |- ( x (,) y ) C_ RR |
|
| 3 | ovex | |- ( x (,) y ) e. _V |
|
| 4 | 3 | elpw | |- ( ( x (,) y ) e. ~P RR <-> ( x (,) y ) C_ RR ) |
| 5 | 2 4 | mpbir | |- ( x (,) y ) e. ~P RR |
| 6 | 1 5 | eqeltrrdi | |- ( ( x e. RR* /\ y e. RR* ) -> { z e. RR* | ( x < z /\ z < y ) } e. ~P RR ) |
| 7 | 6 | rgen2 | |- A. x e. RR* A. y e. RR* { z e. RR* | ( x < z /\ z < y ) } e. ~P RR |
| 8 | df-ioo | |- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
|
| 9 | 8 | fmpo | |- ( A. x e. RR* A. y e. RR* { z e. RR* | ( x < z /\ z < y ) } e. ~P RR <-> (,) : ( RR* X. RR* ) --> ~P RR ) |
| 10 | 7 9 | mpbi | |- (,) : ( RR* X. RR* ) --> ~P RR |