This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovolfs.1 | |- G = ( ( abs o. - ) o. F ) |
|
| Assertion | ovolfsval | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( G ` N ) = ( ( 2nd ` ( F ` N ) ) - ( 1st ` ( F ` N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolfs.1 | |- G = ( ( abs o. - ) o. F ) |
|
| 2 | 1 | fveq1i | |- ( G ` N ) = ( ( ( abs o. - ) o. F ) ` N ) |
| 3 | fvco3 | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( ( ( abs o. - ) o. F ) ` N ) = ( ( abs o. - ) ` ( F ` N ) ) ) |
|
| 4 | 2 3 | eqtrid | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( G ` N ) = ( ( abs o. - ) ` ( F ` N ) ) ) |
| 5 | ffvelcdm | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( F ` N ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 6 | 5 | elin2d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( F ` N ) e. ( RR X. RR ) ) |
| 7 | 1st2nd2 | |- ( ( F ` N ) e. ( RR X. RR ) -> ( F ` N ) = <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. ) |
|
| 8 | 6 7 | syl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( F ` N ) = <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. ) |
| 9 | 8 | fveq2d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( ( abs o. - ) ` ( F ` N ) ) = ( ( abs o. - ) ` <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. ) ) |
| 10 | df-ov | |- ( ( 1st ` ( F ` N ) ) ( abs o. - ) ( 2nd ` ( F ` N ) ) ) = ( ( abs o. - ) ` <. ( 1st ` ( F ` N ) ) , ( 2nd ` ( F ` N ) ) >. ) |
|
| 11 | 9 10 | eqtr4di | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( ( abs o. - ) ` ( F ` N ) ) = ( ( 1st ` ( F ` N ) ) ( abs o. - ) ( 2nd ` ( F ` N ) ) ) ) |
| 12 | ovolfcl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( ( 1st ` ( F ` N ) ) e. RR /\ ( 2nd ` ( F ` N ) ) e. RR /\ ( 1st ` ( F ` N ) ) <_ ( 2nd ` ( F ` N ) ) ) ) |
|
| 13 | 12 | simp1d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( 1st ` ( F ` N ) ) e. RR ) |
| 14 | 13 | recnd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( 1st ` ( F ` N ) ) e. CC ) |
| 15 | 12 | simp2d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( 2nd ` ( F ` N ) ) e. RR ) |
| 16 | 15 | recnd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( 2nd ` ( F ` N ) ) e. CC ) |
| 17 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 18 | 17 | cnmetdval | |- ( ( ( 1st ` ( F ` N ) ) e. CC /\ ( 2nd ` ( F ` N ) ) e. CC ) -> ( ( 1st ` ( F ` N ) ) ( abs o. - ) ( 2nd ` ( F ` N ) ) ) = ( abs ` ( ( 1st ` ( F ` N ) ) - ( 2nd ` ( F ` N ) ) ) ) ) |
| 19 | 14 16 18 | syl2anc | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( ( 1st ` ( F ` N ) ) ( abs o. - ) ( 2nd ` ( F ` N ) ) ) = ( abs ` ( ( 1st ` ( F ` N ) ) - ( 2nd ` ( F ` N ) ) ) ) ) |
| 20 | abssuble0 | |- ( ( ( 1st ` ( F ` N ) ) e. RR /\ ( 2nd ` ( F ` N ) ) e. RR /\ ( 1st ` ( F ` N ) ) <_ ( 2nd ` ( F ` N ) ) ) -> ( abs ` ( ( 1st ` ( F ` N ) ) - ( 2nd ` ( F ` N ) ) ) ) = ( ( 2nd ` ( F ` N ) ) - ( 1st ` ( F ` N ) ) ) ) |
|
| 21 | 12 20 | syl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( abs ` ( ( 1st ` ( F ` N ) ) - ( 2nd ` ( F ` N ) ) ) ) = ( ( 2nd ` ( F ` N ) ) - ( 1st ` ( F ` N ) ) ) ) |
| 22 | 19 21 | eqtrd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( ( 1st ` ( F ` N ) ) ( abs o. - ) ( 2nd ` ( F ` N ) ) ) = ( ( 2nd ` ( F ` N ) ) - ( 1st ` ( F ` N ) ) ) ) |
| 23 | 11 22 | eqtrd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( ( abs o. - ) ` ( F ` N ) ) = ( ( 2nd ` ( F ` N ) ) - ( 1st ` ( F ` N ) ) ) ) |
| 24 | 4 23 | eqtrd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ N e. NN ) -> ( G ` N ) = ( ( 2nd ` ( F ` N ) ) - ( 1st ` ( F ` N ) ) ) ) |