This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by NM, 22-Feb-2006) (Revised by Mario Carneiro, 6-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrleub | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supxrlub | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 < sup ( 𝐴 , ℝ* , < ) ↔ ∃ 𝑥 ∈ 𝐴 𝐵 < 𝑥 ) ) | |
| 2 | 1 | notbid | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ 𝐵 < sup ( 𝐴 , ℝ* , < ) ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝐵 < 𝑥 ) ) |
| 3 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝐵 < 𝑥 ) | |
| 4 | 2 3 | bitr4di | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ 𝐵 < sup ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ) ) |
| 5 | supxrcl | ⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) | |
| 6 | xrlenlt | ⊢ ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup ( 𝐴 , ℝ* , < ) ) ) | |
| 7 | 5 6 | sylan | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup ( 𝐴 , ℝ* , < ) ) ) |
| 8 | simpl | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐴 ⊆ ℝ* ) | |
| 9 | 8 | sselda | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
| 10 | simplr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) | |
| 11 | 9 10 | xrlenltd | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥 ) ) |
| 12 | 11 | ralbidva | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ) ) |
| 13 | 4 7 12 | 3bitr4d | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ) ) |