This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 16-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 (,) 𝑦 ) = { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 2 | ioossre | ⊢ ( 𝑥 (,) 𝑦 ) ⊆ ℝ | |
| 3 | ovex | ⊢ ( 𝑥 (,) 𝑦 ) ∈ V | |
| 4 | 3 | elpw | ⊢ ( ( 𝑥 (,) 𝑦 ) ∈ 𝒫 ℝ ↔ ( 𝑥 (,) 𝑦 ) ⊆ ℝ ) |
| 5 | 2 4 | mpbir | ⊢ ( 𝑥 (,) 𝑦 ) ∈ 𝒫 ℝ |
| 6 | 1 5 | eqeltrrdi | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ) |
| 7 | 6 | rgen2 | ⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ |
| 8 | df-ioo | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 9 | 8 | fmpo | ⊢ ( ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ↔ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ) |
| 10 | 7 9 | mpbi | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |