This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaddcl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 + 𝐵 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 1 → ( 𝐴 + 𝑥 ) = ( 𝐴 + 1 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑥 = 1 → ( ( 𝐴 + 𝑥 ) ∈ ℕ ↔ ( 𝐴 + 1 ) ∈ ℕ ) ) |
| 3 | 2 | imbi2d | ⊢ ( 𝑥 = 1 → ( ( 𝐴 ∈ ℕ → ( 𝐴 + 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 + 1 ) ∈ ℕ ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 + 𝑥 ) = ( 𝐴 + 𝑦 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 + 𝑥 ) ∈ ℕ ↔ ( 𝐴 + 𝑦 ) ∈ ℕ ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ ℕ → ( 𝐴 + 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 + 𝑦 ) ∈ ℕ ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 + 𝑥 ) = ( 𝐴 + ( 𝑦 + 1 ) ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 + 𝑥 ) ∈ ℕ ↔ ( 𝐴 + ( 𝑦 + 1 ) ) ∈ ℕ ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 ∈ ℕ → ( 𝐴 + 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 + ( 𝑦 + 1 ) ) ∈ ℕ ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 + 𝑥 ) = ( 𝐴 + 𝐵 ) ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 + 𝑥 ) ∈ ℕ ↔ ( 𝐴 + 𝐵 ) ∈ ℕ ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ℕ → ( 𝐴 + 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 + 𝐵 ) ∈ ℕ ) ) ) |
| 13 | peano2nn | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 + 1 ) ∈ ℕ ) | |
| 14 | peano2nn | ⊢ ( ( 𝐴 + 𝑦 ) ∈ ℕ → ( ( 𝐴 + 𝑦 ) + 1 ) ∈ ℕ ) | |
| 15 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
| 16 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 17 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 18 | addass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 𝑦 ) + 1 ) = ( 𝐴 + ( 𝑦 + 1 ) ) ) | |
| 19 | 17 18 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝐴 + 𝑦 ) + 1 ) = ( 𝐴 + ( 𝑦 + 1 ) ) ) |
| 20 | 15 16 19 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝐴 + 𝑦 ) + 1 ) = ( 𝐴 + ( 𝑦 + 1 ) ) ) |
| 21 | 20 | eleq1d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝐴 + 𝑦 ) + 1 ) ∈ ℕ ↔ ( 𝐴 + ( 𝑦 + 1 ) ) ∈ ℕ ) ) |
| 22 | 14 21 | imbitrid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝐴 + 𝑦 ) ∈ ℕ → ( 𝐴 + ( 𝑦 + 1 ) ) ∈ ℕ ) ) |
| 23 | 22 | expcom | ⊢ ( 𝑦 ∈ ℕ → ( 𝐴 ∈ ℕ → ( ( 𝐴 + 𝑦 ) ∈ ℕ → ( 𝐴 + ( 𝑦 + 1 ) ) ∈ ℕ ) ) ) |
| 24 | 23 | a2d | ⊢ ( 𝑦 ∈ ℕ → ( ( 𝐴 ∈ ℕ → ( 𝐴 + 𝑦 ) ∈ ℕ ) → ( 𝐴 ∈ ℕ → ( 𝐴 + ( 𝑦 + 1 ) ) ∈ ℕ ) ) ) |
| 25 | 3 6 9 12 13 24 | nnind | ⊢ ( 𝐵 ∈ ℕ → ( 𝐴 ∈ ℕ → ( 𝐴 + 𝐵 ) ∈ ℕ ) ) |
| 26 | 25 | impcom | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 + 𝐵 ) ∈ ℕ ) |