This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding both side of two inequalities. Theorem I.25 of Apostol p. 20. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ltadd1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| lt2addd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| lt2addd.5 | ⊢ ( 𝜑 → 𝐴 < 𝐶 ) | ||
| lt2addd.6 | ⊢ ( 𝜑 → 𝐵 < 𝐷 ) | ||
| Assertion | lt2addd | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ltadd1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | lt2addd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | lt2addd.5 | ⊢ ( 𝜑 → 𝐴 < 𝐶 ) | |
| 6 | lt2addd.6 | ⊢ ( 𝜑 → 𝐵 < 𝐷 ) | |
| 7 | 2 4 6 | ltled | ⊢ ( 𝜑 → 𝐵 ≤ 𝐷 ) |
| 8 | 1 2 3 4 5 7 | ltleaddd | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) |