This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 8-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | ||
| uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| uniioombl.a | ⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) | ||
| uniioombl.e | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | ||
| uniioombl.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| uniioombl.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | ||
| uniioombl.s | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | ||
| uniioombl.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | ||
| uniioombl.v | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | ||
| uniioombl.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| uniioombl.m2 | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑇 ‘ 𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) | ||
| uniioombl.k | ⊢ 𝐾 = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) | ||
| Assertion | uniioombllem3a | ⊢ ( 𝜑 → ( 𝐾 = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 2 | uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 3 | uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 4 | uniioombl.a | ⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) | |
| 5 | uniioombl.e | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | |
| 6 | uniioombl.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 7 | uniioombl.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 8 | uniioombl.s | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | |
| 9 | uniioombl.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | |
| 10 | uniioombl.v | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | |
| 11 | uniioombl.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 12 | uniioombl.m2 | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑇 ‘ 𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) | |
| 13 | uniioombl.k | ⊢ 𝐾 = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) | |
| 14 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 15 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 16 | rexpssxrxp | ⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) | |
| 17 | 15 16 | sstri | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 18 | fss | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) | |
| 19 | 7 17 18 | sylancl | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 20 | fco | ⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ ) | |
| 21 | 14 19 20 | sylancr | ⊢ ( 𝜑 → ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ ) |
| 22 | ffun | ⊢ ( ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ → Fun ( (,) ∘ 𝐺 ) ) | |
| 23 | funiunfv | ⊢ ( Fun ( (,) ∘ 𝐺 ) → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ) | |
| 24 | 21 22 23 | 3syl | ⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ) |
| 25 | elfznn | ⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ℕ ) | |
| 26 | fvco3 | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) | |
| 27 | 7 25 26 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 28 | 27 | iuneq2dv | ⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 29 | 24 28 | eqtr3d | ⊢ ( 𝜑 → ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 30 | 13 29 | eqtrid | ⊢ ( 𝜑 → 𝐾 = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 31 | ffvelcdm | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 32 | 7 25 31 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 33 | 32 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) ) |
| 34 | 1st2nd2 | ⊢ ( ( 𝐺 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) → ( 𝐺 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) |
| 36 | 35 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) ) |
| 37 | df-ov | ⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) | |
| 38 | 36 37 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 39 | ioossre | ⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ | |
| 40 | 38 39 | eqsstrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 41 | 40 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 42 | iunss | ⊢ ( ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ↔ ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) | |
| 43 | 41 42 | sylibr | ⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 44 | 30 43 | eqsstrd | ⊢ ( 𝜑 → 𝐾 ⊆ ℝ ) |
| 45 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) | |
| 46 | 38 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 47 | ovolfcl | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) | |
| 48 | 7 25 47 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 49 | ovolioo | ⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) | |
| 50 | 48 49 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 51 | 46 50 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 52 | 48 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 53 | 48 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 54 | 52 53 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 55 | 51 54 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 56 | 45 55 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 57 | 30 | fveq2d | ⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) = ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 58 | 40 55 | jca | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ∧ ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) ) |
| 59 | 58 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ∧ ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) ) |
| 60 | ovolfiniun | ⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ∧ ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) ) → ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ≤ Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) | |
| 61 | 45 59 60 | syl2anc | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ≤ Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 62 | 57 61 | eqbrtrd | ⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) ≤ Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 63 | ovollecl | ⊢ ( ( 𝐾 ⊆ ℝ ∧ Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ∧ ( vol* ‘ 𝐾 ) ≤ Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) → ( vol* ‘ 𝐾 ) ∈ ℝ ) | |
| 64 | 44 56 62 63 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) ∈ ℝ ) |
| 65 | 30 64 | jca | ⊢ ( 𝜑 → ( 𝐾 = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) ) |