This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006) (Proof shortened by Wolf Lammen, 16-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imaco | ⊢ ( ( 𝐴 ∘ 𝐵 ) “ 𝐶 ) = ( 𝐴 “ ( 𝐵 “ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex | ⊢ ( ∃ 𝑦 ∈ ( 𝐵 “ 𝐶 ) 𝑦 𝐴 𝑥 ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ∧ 𝑦 𝐴 𝑥 ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | elima | ⊢ ( 𝑥 ∈ ( 𝐴 “ ( 𝐵 “ 𝐶 ) ) ↔ ∃ 𝑦 ∈ ( 𝐵 “ 𝐶 ) 𝑦 𝐴 𝑥 ) |
| 4 | vex | ⊢ 𝑧 ∈ V | |
| 5 | 4 2 | brco | ⊢ ( 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑥 ↔ ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
| 6 | 5 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝐶 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑥 ↔ ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
| 7 | rexcom4 | ⊢ ( ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ↔ ∃ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) | |
| 8 | r19.41v | ⊢ ( ∃ 𝑧 ∈ 𝐶 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) | |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
| 10 | 6 7 9 | 3bitri | ⊢ ( ∃ 𝑧 ∈ 𝐶 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑥 ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
| 11 | 2 | elima | ⊢ ( 𝑥 ∈ ( ( 𝐴 ∘ 𝐵 ) “ 𝐶 ) ↔ ∃ 𝑧 ∈ 𝐶 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑥 ) |
| 12 | vex | ⊢ 𝑦 ∈ V | |
| 13 | 12 | elima | ⊢ ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ↔ ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ) |
| 14 | 13 | anbi1i | ⊢ ( ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ∧ 𝑦 𝐴 𝑥 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
| 15 | 14 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ∧ 𝑦 𝐴 𝑥 ) ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
| 16 | 10 11 15 | 3bitr4i | ⊢ ( 𝑥 ∈ ( ( 𝐴 ∘ 𝐵 ) “ 𝐶 ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ∧ 𝑦 𝐴 𝑥 ) ) |
| 17 | 1 3 16 | 3bitr4ri | ⊢ ( 𝑥 ∈ ( ( 𝐴 ∘ 𝐵 ) “ 𝐶 ) ↔ 𝑥 ∈ ( 𝐴 “ ( 𝐵 “ 𝐶 ) ) ) |
| 18 | 17 | eqriv | ⊢ ( ( 𝐴 ∘ 𝐵 ) “ 𝐶 ) = ( 𝐴 “ ( 𝐵 “ 𝐶 ) ) |