This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any (closed) interval covering is a subset of the reals. (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolficcss | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnco2 | ⊢ ran ( [,] ∘ 𝐹 ) = ( [,] “ ran 𝐹 ) | |
| 2 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 3 | 2 | elin2d | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ × ℝ ) ) |
| 4 | 1st2nd2 | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑦 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) 〉 ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝐹 ‘ 𝑦 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) 〉 ) |
| 6 | 5 | fveq2d | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) = ( [,] ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) 〉 ) ) |
| 7 | df-ov | ⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) [,] ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( [,] ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) 〉 ) | |
| 8 | 6 7 | eqtr4di | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) [,] ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 9 | xp1st | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) | |
| 10 | 3 9 | syl | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 11 | xp2nd | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) | |
| 12 | 3 11 | syl | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 13 | iccssre | ⊢ ( ( ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) [,] ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) ) ⊆ ℝ ) | |
| 14 | 10 12 13 | syl2anc | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) [,] ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) ) ⊆ ℝ ) |
| 15 | 8 14 | eqsstrd | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ ) |
| 16 | reex | ⊢ ℝ ∈ V | |
| 17 | 16 | elpw2 | ⊢ ( ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ 𝒫 ℝ ↔ ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ ) |
| 18 | 15 17 | sylibr | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ 𝒫 ℝ ) |
| 19 | 18 | ralrimiva | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∀ 𝑦 ∈ ℕ ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ 𝒫 ℝ ) |
| 20 | ffn | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝐹 Fn ℕ ) | |
| 21 | fveq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( [,] ‘ 𝑥 ) = ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 22 | 21 | eleq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( ( [,] ‘ 𝑥 ) ∈ 𝒫 ℝ ↔ ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ 𝒫 ℝ ) ) |
| 23 | 22 | ralrn | ⊢ ( 𝐹 Fn ℕ → ( ∀ 𝑥 ∈ ran 𝐹 ( [,] ‘ 𝑥 ) ∈ 𝒫 ℝ ↔ ∀ 𝑦 ∈ ℕ ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ 𝒫 ℝ ) ) |
| 24 | 20 23 | syl | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ∀ 𝑥 ∈ ran 𝐹 ( [,] ‘ 𝑥 ) ∈ 𝒫 ℝ ↔ ∀ 𝑦 ∈ ℕ ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ 𝒫 ℝ ) ) |
| 25 | 19 24 | mpbird | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∀ 𝑥 ∈ ran 𝐹 ( [,] ‘ 𝑥 ) ∈ 𝒫 ℝ ) |
| 26 | iccf | ⊢ [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* | |
| 27 | ffun | ⊢ ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → Fun [,] ) | |
| 28 | 26 27 | ax-mp | ⊢ Fun [,] |
| 29 | frn | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran 𝐹 ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 30 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 31 | rexpssxrxp | ⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) | |
| 32 | 30 31 | sstri | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 33 | 26 | fdmi | ⊢ dom [,] = ( ℝ* × ℝ* ) |
| 34 | 32 33 | sseqtrri | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ dom [,] |
| 35 | 29 34 | sstrdi | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran 𝐹 ⊆ dom [,] ) |
| 36 | funimass4 | ⊢ ( ( Fun [,] ∧ ran 𝐹 ⊆ dom [,] ) → ( ( [,] “ ran 𝐹 ) ⊆ 𝒫 ℝ ↔ ∀ 𝑥 ∈ ran 𝐹 ( [,] ‘ 𝑥 ) ∈ 𝒫 ℝ ) ) | |
| 37 | 28 35 36 | sylancr | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( [,] “ ran 𝐹 ) ⊆ 𝒫 ℝ ↔ ∀ 𝑥 ∈ ran 𝐹 ( [,] ‘ 𝑥 ) ∈ 𝒫 ℝ ) ) |
| 38 | 25 37 | mpbird | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( [,] “ ran 𝐹 ) ⊆ 𝒫 ℝ ) |
| 39 | 1 38 | eqsstrid | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran ( [,] ∘ 𝐹 ) ⊆ 𝒫 ℝ ) |
| 40 | sspwuni | ⊢ ( ran ( [,] ∘ 𝐹 ) ⊆ 𝒫 ℝ ↔ ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) | |
| 41 | 39 40 | sylib | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |