This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set is contained in another of bounded measure, it too is bounded. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolsscl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → 𝐴 ⊆ ℝ ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → 𝐴 ⊆ ℝ ) |
| 3 | simp3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝐵 ) ∈ ℝ ) | |
| 4 | ovolss | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) | |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) |
| 6 | ovollecl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) | |
| 7 | 2 3 5 6 | syl3anc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |