This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express an upper integer set as the disjoint (see uzdisj ) union of the first N values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzsplit | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑀 ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ ( ℤ≥ ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℝ ) | |
| 2 | eluzelre | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℝ ) | |
| 3 | lelttric | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁 ) ) |
| 5 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 6 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) | |
| 7 | eluz | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑁 ≤ 𝑘 ) ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑁 ≤ 𝑘 ) ) |
| 9 | eluzle | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑘 ) | |
| 10 | 6 9 | jca | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) |
| 12 | eluzel2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 13 | elfzm11 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < 𝑁 ) ) ) | |
| 14 | df-3an | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < 𝑁 ) ↔ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑘 < 𝑁 ) ) | |
| 15 | 13 14 | bitrdi | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ↔ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑘 < 𝑁 ) ) ) |
| 16 | 12 5 15 | syl2anr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ↔ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑘 < 𝑁 ) ) ) |
| 17 | 11 16 | mpbirand | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ↔ 𝑘 < 𝑁 ) ) |
| 18 | 8 17 | orbi12d | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∨ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) ↔ ( 𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁 ) ) ) |
| 19 | 4 18 | mpbird | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∨ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) ) |
| 20 | 19 | orcomd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
| 21 | 20 | ex | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ) |
| 22 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 23 | 22 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 24 | uztrn | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 25 | 24 | expcom | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 26 | 23 25 | jaod | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 27 | 21 26 | impbid | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ) |
| 28 | elun | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ ( ℤ≥ ‘ 𝑁 ) ) ↔ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) | |
| 29 | 27 28 | bitr4di | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ ( ℤ≥ ‘ 𝑁 ) ) ) ) |
| 30 | 29 | eqrdv | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑀 ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ ( ℤ≥ ‘ 𝑁 ) ) ) |