This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition commutes. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1cnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 1 ∈ ℂ ) | |
| 2 | 1 1 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 + 1 ) ∈ ℂ ) |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 4 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 5 | 2 3 4 | adddid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 1 ) · ( 𝐴 + 𝐵 ) ) = ( ( ( 1 + 1 ) · 𝐴 ) + ( ( 1 + 1 ) · 𝐵 ) ) ) |
| 6 | 3 4 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 7 | 1p1times | ⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → ( ( 1 + 1 ) · ( 𝐴 + 𝐵 ) ) = ( ( 𝐴 + 𝐵 ) + ( 𝐴 + 𝐵 ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 1 ) · ( 𝐴 + 𝐵 ) ) = ( ( 𝐴 + 𝐵 ) + ( 𝐴 + 𝐵 ) ) ) |
| 9 | 1p1times | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 1 ) · 𝐴 ) = ( 𝐴 + 𝐴 ) ) | |
| 10 | 1p1times | ⊢ ( 𝐵 ∈ ℂ → ( ( 1 + 1 ) · 𝐵 ) = ( 𝐵 + 𝐵 ) ) | |
| 11 | 9 10 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 1 + 1 ) · 𝐴 ) + ( ( 1 + 1 ) · 𝐵 ) ) = ( ( 𝐴 + 𝐴 ) + ( 𝐵 + 𝐵 ) ) ) |
| 12 | 5 8 11 | 3eqtr3rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐴 ) + ( 𝐵 + 𝐵 ) ) = ( ( 𝐴 + 𝐵 ) + ( 𝐴 + 𝐵 ) ) ) |
| 13 | 3 3 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐴 ) ∈ ℂ ) |
| 14 | 13 4 4 | addassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐴 ) + 𝐵 ) + 𝐵 ) = ( ( 𝐴 + 𝐴 ) + ( 𝐵 + 𝐵 ) ) ) |
| 15 | 6 3 4 | addassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) + 𝐴 ) + 𝐵 ) = ( ( 𝐴 + 𝐵 ) + ( 𝐴 + 𝐵 ) ) ) |
| 16 | 12 14 15 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐴 ) + 𝐵 ) + 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) + 𝐴 ) + 𝐵 ) ) |
| 17 | 13 4 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐴 ) + 𝐵 ) ∈ ℂ ) |
| 18 | 6 3 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐴 ) ∈ ℂ ) |
| 19 | addcan2 | ⊢ ( ( ( ( 𝐴 + 𝐴 ) + 𝐵 ) ∈ ℂ ∧ ( ( 𝐴 + 𝐵 ) + 𝐴 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 + 𝐴 ) + 𝐵 ) + 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) + 𝐴 ) + 𝐵 ) ↔ ( ( 𝐴 + 𝐴 ) + 𝐵 ) = ( ( 𝐴 + 𝐵 ) + 𝐴 ) ) ) | |
| 20 | 17 18 4 19 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 + 𝐴 ) + 𝐵 ) + 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) + 𝐴 ) + 𝐵 ) ↔ ( ( 𝐴 + 𝐴 ) + 𝐵 ) = ( ( 𝐴 + 𝐵 ) + 𝐴 ) ) ) |
| 21 | 16 20 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐴 ) + 𝐵 ) = ( ( 𝐴 + 𝐵 ) + 𝐴 ) ) |
| 22 | 3 3 4 | addassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐴 ) + 𝐵 ) = ( 𝐴 + ( 𝐴 + 𝐵 ) ) ) |
| 23 | 3 4 3 | addassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐴 ) = ( 𝐴 + ( 𝐵 + 𝐴 ) ) ) |
| 24 | 21 22 23 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( 𝐴 + 𝐵 ) ) = ( 𝐴 + ( 𝐵 + 𝐴 ) ) ) |
| 25 | 4 3 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + 𝐴 ) ∈ ℂ ) |
| 26 | addcan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) ∈ ℂ ∧ ( 𝐵 + 𝐴 ) ∈ ℂ ) → ( ( 𝐴 + ( 𝐴 + 𝐵 ) ) = ( 𝐴 + ( 𝐵 + 𝐴 ) ) ↔ ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) ) | |
| 27 | 3 6 25 26 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + ( 𝐴 + 𝐵 ) ) = ( 𝐴 + ( 𝐵 + 𝐴 ) ) ↔ ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) ) |
| 28 | 24 27 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |