This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an outer volume is bounded above, then it is real. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovollecl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ≤ 𝐵 ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolcl | ⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ≤ 𝐵 ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
| 3 | simp2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ≤ 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 4 | ovolge0 | ⊢ ( 𝐴 ⊆ ℝ → 0 ≤ ( vol* ‘ 𝐴 ) ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ≤ 𝐵 ) → 0 ≤ ( vol* ‘ 𝐴 ) ) |
| 6 | simp3 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ≤ 𝐵 ) → ( vol* ‘ 𝐴 ) ≤ 𝐵 ) | |
| 7 | xrrege0 | ⊢ ( ( ( ( vol* ‘ 𝐴 ) ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( vol* ‘ 𝐴 ) ∧ ( vol* ‘ 𝐴 ) ≤ 𝐵 ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) | |
| 8 | 2 3 5 6 7 | syl22anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ≤ 𝐵 ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |