This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by SN, 7-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluzsub | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → ( 𝑁 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → 𝑀 ∈ ℤ ) | |
| 2 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) → 𝑁 ∈ ℤ ) | |
| 3 | 2 | 3ad2ant3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → 𝑁 ∈ ℤ ) |
| 4 | simp2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → 𝐾 ∈ ℤ ) | |
| 5 | 3 4 | zsubcld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → ( 𝑁 − 𝐾 ) ∈ ℤ ) |
| 6 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) → ( 𝑀 + 𝐾 ) ≤ 𝑁 ) | |
| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → ( 𝑀 + 𝐾 ) ≤ 𝑁 ) |
| 8 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 9 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 10 | eluzelre | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) → 𝑁 ∈ ℝ ) | |
| 11 | leaddsub | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑀 + 𝐾 ) ≤ 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 𝐾 ) ) ) | |
| 12 | 8 9 10 11 | syl3an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → ( ( 𝑀 + 𝐾 ) ≤ 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 𝐾 ) ) ) |
| 13 | 7 12 | mpbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → 𝑀 ≤ ( 𝑁 − 𝐾 ) ) |
| 14 | eluz2 | ⊢ ( ( 𝑁 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 𝐾 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑁 − 𝐾 ) ) ) | |
| 15 | 1 5 13 14 | syl3anbrc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → ( 𝑁 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |