This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzdisj | ⊢ ( 𝐾 < 𝑀 → ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑥 ∈ ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 2 | elfzel1 | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ∈ ℤ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ∈ ℤ ) |
| 4 | 3 | zred | ⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ∈ ℝ ) |
| 5 | elfzel2 | ⊢ ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) → 𝐾 ∈ ℤ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ℤ ) |
| 7 | 6 | zred | ⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ℝ ) |
| 8 | elfzelz | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℤ ) | |
| 9 | 8 | zred | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℝ ) |
| 10 | 9 | adantl | ⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ℝ ) |
| 11 | elfzle1 | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ≤ 𝑥 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ≤ 𝑥 ) |
| 13 | elfzle2 | ⊢ ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) → 𝑥 ≤ 𝐾 ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ≤ 𝐾 ) |
| 15 | 4 10 7 12 14 | letrd | ⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ≤ 𝐾 ) |
| 16 | 4 7 15 | lensymd | ⊢ ( ( 𝑥 ∈ ( 𝐽 ... 𝐾 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ¬ 𝐾 < 𝑀 ) |
| 17 | 1 16 | sylbi | ⊢ ( 𝑥 ∈ ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) → ¬ 𝐾 < 𝑀 ) |
| 18 | 17 | con2i | ⊢ ( 𝐾 < 𝑀 → ¬ 𝑥 ∈ ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) ) |
| 19 | 18 | eq0rdv | ⊢ ( 𝐾 < 𝑀 → ( ( 𝐽 ... 𝐾 ) ∩ ( 𝑀 ... 𝑁 ) ) = ∅ ) |